Citation: | CHE Fudong, WANG Tao, XIN Peng, ZHANG Zelin, LIANG Changyu, LIU Jiamei. Investigation of dynamic response and deformation characteristics of loess landslide under near and far earthquakes: A case study of Liping landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981-1992. |
Seismic landslides in the loess plateau of China have severe disastrous effects and high potential risks.The response and deformation mechanism of seismic landslides is one of the hot topics of research.Taking the large-scale loess landslide in Liping Village in the Tianshui earthquake area as an example, the authors used the standard sine wave to explore the characteristics of the dynamic response influence on the landslide from local and remote earthquake ground motion elements, and inverted the actual Wenchuan remote earthquake and the local earthquake in Minxian County.According to the results obtained, the variation of PGA amplification factor at the measuring point with amplitude is related to the position of monitoring point:when the height of monitoring point is greater than 0.75 times overall height of the slope, the PGA amplification factor of monitoring point basically decreases with the increase of amplitude; when the height of monitoring point is less than 0.75 times overall height of the slope, the PGA amplification factor of monitoring point increases significantly with the increase of amplitude; the PGA amplification factor at the measuring point is negatively correlated with the frequency.Slope deformation is positively correlated with amplitude and duration:when the amplitude and duration increase, the maximum horizontal and vertical displacement of monitoring points shows an increasing trend, the critical amplitude of the slope body's sharp deformation is about 0.05 g; when slope deformation is negatively correlated with frequency, the frequency increases, the maximum horizontal and vertical displacement of monitoring points decreases, the critical frequency of rapid deformation is about 5 Hz; the impact of amplitude on slope instability is greater than that of frequency on slope instability.Compared with the local earthquake in Minxian, the movement of main sliding body is inseparable from the high amplitude, low frequency, and long-lasting seismic waves generated by the Wenchuan earthquake.If the strong far earthquakes is ignored in the study of earthquake landslide stability Impact, significant safety risks may occur.In this paper, the research method about dynamic response and deformation difference of landslides caused by near and far earthquakes has certain reference significance for the research on earthquake landslide stability.
[1] | 袁丽侠.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西北大学博士学位论文, 2005. |
[2] | Sun P, Shao T Q, Shi J S, et al.Giant Landslides Triggered by the 1718 Tongwei Earthquake in Pan'an, Gansu Province, China[J].Acta Geologica Sinica, 2015, 89(1):309-310. |
[3] | 王兰民, 孙军杰.黄土高原城镇建设中的地震安全问题[J].地震工程与工程振动, 2014, 34(4):115-122. |
[4] | 高孟潭等.GB18306-2015中国地震动参数区划图[M].北京:中国标准出版社, 2015. |
[5] | Peng J B, Wang S K, Wang Q Y, et al.Distribution and genetic types of loess landslides in China[J].Journal of Asian Earth Sciences, 2019, 170:329-350. doi: 10.1016/j.jseaes.2018.11.015 |
[6] | 王家鼎, 张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报, 1999, 21(6):670-674. doi: 10.3321/j.issn:1000-4548.1999.06.008 |
[7] | 邓龙胜, 范文.宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J].灾害学, 2013, 28(3):30-37. doi: 10.3969/j.issn.1000-811X.2013.03.007 |
[8] | 王兰民.黄土地层大规模地震液化滑移的机理与风险评估[J].岩土工程学报, 2020, 42(1):1-19. |
[9] | 王峻.黄土易损性与地震黄土滑坡关系探讨[J].甘肃科学学报, 2008, 20(2):36-40. doi: 10.3969/j.issn.1004-0366.2008.02.011 |
[10] | 王谦, 王兰民, 王峻, 等.岷县漳县地震灾后重建场地黄土震害预测[J].水文地质工程地质, 2017, 44(5):137-142. |
[11] | 谢睿, 裴向军.强震作用下饱和黄土液化特征试验研究[J].路基工程, 2014, (2):49-52. |
[12] | 言志信, 张森, 张学东, 等.顺层岩质边坡地震动力响应及地震动参数影响研究[J].岩石力学与工程学报, 2011, 30(S2):3522-3528. |
[13] | Zhang Z L, Wang T, Wu S R, et al.The role of seismic triggering in a deep-seated mudstone landslide, China:Historical reconstruction and mechanism analysis[J].Engineering Geology, 2017, 226:122-135. doi: 10.1016/j.enggeo.2017.06.001 |
[14] | 张泽林, 吴树仁, 王涛, 等.地震波振幅对黄土-泥岩边坡动力响应规律的影响[J].岩土力学, 2018, 39(7):2403-2412. |
[15] | 张泽林, 吴树仁, 王涛, 等.地震作用下黄土滑坡加速度深度放大效应及震后变形模式研究[J].土木工程学报, 2018, 51(4):102-110. |
[16] | 孙萍, 祝恩珍, 张帅, 等.地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J].现代地质, 2019, 33(1):218-226. |
[17] | 刘汉香, 许强, 范宣梅.地震动参数对斜坡加速度动力响应规律的影响[J].地震动工程与工程振动, 2012, 32(2):41-47. |
[18] | 邓龙胜, 范文.黄土边坡动力响应的影响效应研究[J].工程地质学报, 2012, 20(4):483-490. doi: 10.3969/j.issn.1004-9665.2012.04.003 |
[19] | Zhang Z L, Wang T, Wu S R, et al.Dynamics characteristic of red clay in a deep-seated landslide, Northwest China:An experiment study[J].Engineering Geology, 2018, 239:254-268. doi: 10.1016/j.enggeo.2018.04.005 |
[20] | 陈永明, 石玉成.中国西北黄土地区地震滑坡基本特征[J].地震研究, 2006, 29(3):276-280, 318. doi: 10.3969/j.issn.1000-0666.2006.03.012 |
[21] | 黄帅, 宋波, 蔡德钩, 等.近远场地震下高陡边坡的动力响应及永久位移分析[J].岩土工程学报, 2013, 35(S2):768-773. |
[22] | 杨长卫.岩质边坡的地震动特性及基覆型边坡的滑坡成因、稳定性判识、危害范围评价体系的研究[D].西南交通大学博士学位论文, 2014. |
[23] | 王雷, 赵法锁, 程晓辉, 等.黄土基岩接触面滑坡滑带土物理力学特性及微观结构[J].地球科学与环境学报, 2017, 39(3):450-458. doi: 10.3969/j.issn.1672-6561.2017.03.013 |
[24] | 邓亚虹, 徐召, 孙科, 等.一种考虑波动效应的拟动力地震边坡稳定性分析方法[J].地球科学与环境学报, 2019, 41(5):620-630. |
[25] | 王阿丹, 王昌业, 李萍, 等.西安白鹿塬北缘黄土边坡稳定的可靠度分析[J].地球科学与环境学报, 2012, 34(1):104-110. |
[26] | 贺汇文, 龙建辉, 苏生瑞, 等.某高速公路滑坡的数值模拟及后缘坡体稳定性分析[J].地球科学与环境学报, 2008, 30(2):183-187. |
[27] | 徐光兴, 姚令侃, 李朝红, 等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报, 2008, 30(6):918-923. |
[28] | 邢爱国, 吴志坚, 陈龙珠, 等.汶川地震在甘肃省的次生典型边坡灾害特征[J].西北地震学报, 2010, 32(1):95-98. |
Planview of Liping landslide
Fullmap of Liping landslide
Engineering geological section of Liping landslide
Numerical model of landslide and location of survey lines and monitoring points
Acceleration time history of Wenchuan earthquake wave in 2008(a) and Minxian earthquake wave in 2013(b) (baseline correction and filtering)
Spectra of the Fourier Transform of the 2008 Wenchuan earthquake wave(a) and the 2013 Minxian earthquake wave(b)
Relationship between PGA amplification factor, horizontal ratio(a), and ratio of heights(b) under different amplitude conditions
Maximum displacement of landslide underdifferent amplitude conditions
Relationship between PGA amplification factor, horizontal ratio(a), and ratio of heights(b) under different frequency conditions
Maximum displacement of landslide under different frequency conditions
Maximum displacement of landslide under different frequency duration spans
Relationship between PGA amplification factor, horizontal ratio(a), and ratio of heights(b) on the horizontal and vertical lines on the two seismic conditions
Relationship between PGA amplification factor and horizontal ratio(a), and ratio of heights(b) of the landslide surface line between the two earthquake conditions
Distribution of horizontal displacement field under Wenchuan(a) and Minxian(b) earthquake conditions