2021 Vol. 40, No. 1
Article Contents

LU Zhanwu, LI Wenhui, ZHANG Xinyan, LI Qiusheng, CAI Yuguo, REN Yanzong, CHENG Yongzhi, WANG Guangwen. A geophysical technology for thematic geological mapping: Short period dense array[J]. Geological Bulletin of China, 2021, 40(1): 1-12.
Citation: LU Zhanwu, LI Wenhui, ZHANG Xinyan, LI Qiusheng, CAI Yuguo, REN Yanzong, CHENG Yongzhi, WANG Guangwen. A geophysical technology for thematic geological mapping: Short period dense array[J]. Geological Bulletin of China, 2021, 40(1): 1-12.

A geophysical technology for thematic geological mapping: Short period dense array

  • Thematic geological mapping driven by the demands and problems emphasizes that for different geological environments such as a major geological body, sedimentary basin, important metallogenic belt and fault system, modern technical means can be adopted to carry out thematic geological investigation and mapping, so as to solve some major problems of above-mentioned geological environments.Geophysics, as one indispensable means in thematic mapping, its short-period dense array technology developed in recent 10 years has attracted much attention due to flexible layout, wide application, high precision and low cost.This paper mainly introduces the current situation of short period dense array, and its application to near surface structure investigation under different geological and geomorphic conditions such as cities, mines, earthquake and sedimentary basins, etc.The application prospect and technical scheme suggestions of its technology in thematic geological mapping is put forward to improve and perfect the method system of thematic geological mapping technology by means of constructing structure imaging method through the investigation of short period dense array.

  • 加载中
  • [1] 王涛, 计文化, 胡建民, 等. 专题地质填图及有关问题讨论[J]. 地质通报, 2016, 35(5): 633-641. doi: 10.3969/j.issn.1671-2552.2016.05.001

    CrossRef Google Scholar

    [2] 孟贵祥, 吕庆田, 严加永, 等. "穿透性"探测技术在覆盖区地质矿产调查中的应用研究[J]. 地球学报, 2019, 40(5): 637-650.

    Google Scholar

    [3] Lin F C, Li D Z, Clayton R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4): 45-56.

    Google Scholar

    [4] Yao H J, Wang B S, Tian X B, et al. Preface to the special issue of dense array seismology[J]. Earthquake Science, 2018, 31: 225-226. doi: 10.29382/eqs-2018-0225-1

    CrossRef Google Scholar

    [5] Inbal A, Clayton R W, Ampuero J P. Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth-dependent earthquake size distribution[J]. Geophysical Research Letters, 2015, 42(15): 6314-6323. doi: 10.1002/2015GL064942

    CrossRef Google Scholar

    [6] Inbal A, Ampuero J P, Clayton R W. Localized seismic deformation in the upper mantle revealed by dense seismic arrays[J]. Science, 2016, 354(6308): 88-92. doi: 10.1126/science.aaf1370

    CrossRef Google Scholar

    [7] Liu Z, Tian X B, Gao R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, (480): 33-41.

    Google Scholar

    [8] Bao F, Li Z W, Tian B F, et al. Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey[J]. Journal of Asian Earth Sciences, 2019, (185): 104045. https: //doi. org/10.1016/j. jseaes. 2019.104045

    Google Scholar

    [9] 梁锋, 高磊, 王志辉, 等. 利用背景噪声层析成像研究济南浅层横波速度结构[J]. 地学前缘, 2019, 26(3): 129-139.

    Google Scholar

    [10] Li Z W, Ni S D, Zhang B L, et al. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophysical Research Letters, 2016, 43: 4951-496.

    Google Scholar

    [11] 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2): 495-511.

    Google Scholar

    [12] Liu Z, Tian X B, Gao R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41. doi: 10.1016/j.epsl.2017.09.048

    CrossRef Google Scholar

    [13] 张路, 白志明, 徐涛, 等. 哀牢山地区新生代岩浆活动与掀斜式抬升: 来自短周期密集台阵观测的证据[J]. 中国科学: 地球科学, 2020, 50(8): 1069-1082.

    Google Scholar

    [14] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bull. Earthq. Res. Inst. , 1957, 35: 415-456.

    Google Scholar

    [15] Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Reports, Railway Technical Research Institute, 1989, 30(1): 25-33.

    Google Scholar

    [16] Brenguier F, Duputel Z, Shapiro N M. Towards forecasting volcanic eruptions using seismic noise[J]. Nature Geoscience, 2008, 1(2): 126-130. doi: 10.1038/ngeo104

    CrossRef Google Scholar

    [17] Xu Z J, Song X D. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14207-14212. doi: 10.1073/pnas.0901164106

    CrossRef Google Scholar

    [18] Bensen G D, Ritzwoller M, Barmin M, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169: 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

    CrossRef Google Scholar

    [19] Bao F, Li Z W, Yuen D, et al. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method[J]. Physics of the Earth and Planetary Interiors, 2018, 281: 46-54. doi: 10.1016/j.pepi.2018.05.004

    CrossRef Google Scholar

    [20] 刘保金, 曲国胜, 孙铭心, 等. 唐山地震区地壳结构和构造: 深地震反射剖面结果[J]. 地震地质, 2011, 33(4): 901-912. doi: 10.3969/j.issn.0253-4967.2011.04.014

    CrossRef Google Scholar

    [21] 郭慧, 江娃利, 谢新生. 对1976年河北唐山MS7.8地震地表破裂带展布及位移特征的新认识[J]. 地震地质, 2011, 33(3): 506-524. doi: 10.3969/j.issn.0253-4967.2011.03.002

    CrossRef Google Scholar

    [22] Yang H F, Duan Y H, Song J H, et al. Fine structure of the Chenghai fault zone, Yunnan, China, constrained from teleseismic travel time and ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: 1-14.

    Google Scholar

    [23] 林良俊, 李亚民, 葛伟亚, 等. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质, 2017, 44(6): 1086-1101.

    Google Scholar

    [24] Li C, Yao H J, Fang H J, et al. 3D Near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 2016, 87(4): 882-892. doi: 10.1785/0220150257

    CrossRef Google Scholar

    [25] 王爽, 孙新蕾, 秦加岭, 等. 利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构[J]. 地球物理学报, 2018, 61(2): 593-603.

    Google Scholar

    [26] Du P X, Wu J, Wang J, et al. Imaging Karatungk Cu-Ni mine in Xinjiang, western China with a passive seismic array[J]. Minerals, 2020, 10(7): 601. doi: 10.3390/min10070601

    CrossRef Google Scholar

    [27] 田忠华, 刘福来, 许王, 等. 构造变形在变质岩专题填图中的作用及其意义——以辽南辽河群试点填图区为例[J]. 地质通报, 2017, 36(11): 1942-1952. doi: 10.3969/j.issn.1671-2552.2017.11.005

    CrossRef Google Scholar

    [28] 童英, 郭磊, 王涛, 等. 同源花岗岩谱系填图——内蒙古二连宝德尔石林花岗岩填图试点[J]. 地质通报, 2017, 36(11): 1963-1970. doi: 10.3969/j.issn.1671-2552.2017.11.007

    CrossRef Google Scholar

    [29] 薛怀民, 曹光跃, 刘哲. 陆相火山岩区岩性组合-岩相填图试验——以内蒙古西太仆寺破火山为例[J]. 地质通报, 2017, 36(11): 2030-2035. doi: 10.3969/j.issn.1671-2552.2017.11.012

    CrossRef Google Scholar

    [30] 许欢, 柳永清, 旷红伟, 等. 燕山西部尚义盆地沉积岩区专题地质填图方法与成果[J]. 地质通报, 2017, 36(11): 1893-1918. doi: 10.3969/j.issn.1671-2552.2017.11.002

    CrossRef Google Scholar

    [31] 闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37(2/3): 167-191.

    Google Scholar

    [32] 张进, 曲军峰, 张庆龙, 等. 基岩区构造地质填图方法思考、实践、探索[J]. 地质通报, 2018, 37(2/3): 192-221.

    Google Scholar

    [33] Yao H J, Hilst R D V D, Hoop M V D. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 166(2): 732-744. doi: 10.1111/j.1365-246X.2006.03028.x

    CrossRef Google Scholar

    [34] Yao H J, Pierre G, Collins J A, et al. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves[J]. Comptes Rendus Geoence, 2011, 343(8): 571-583.

    Google Scholar

    [35] Bowden D C, Tsai V C, Lin F C. Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA[J]. Geophysical Research Letters, 2015, 42(5): 1360-1367. doi: 10.1002/2014GL062662

    CrossRef Google Scholar

    [36] Mordret A, Roux P, Boué P, et al. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array[J]. Geophysical Journal International, 2019, 216: 896-905. doi: 10.1093/gji/ggy464

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(930) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint