2021 Vol. 40, No. 1
Article Contents

LU Peng, TONG Ying, MENG Qiuyi, ZHANG Huafeng. Petrogenesis and tectonic setting of the Late Permian A-type granitic dyke swarm in Ulungur, East Junggar[J]. Geological Bulletin of China, 2021, 40(1): 58-70.
Citation: LU Peng, TONG Ying, MENG Qiuyi, ZHANG Huafeng. Petrogenesis and tectonic setting of the Late Permian A-type granitic dyke swarm in Ulungur, East Junggar[J]. Geological Bulletin of China, 2021, 40(1): 58-70.

Petrogenesis and tectonic setting of the Late Permian A-type granitic dyke swarm in Ulungur, East Junggar

More Information
  • A large number of Late Paleozoic granites occur in the East Junggar on the southwest margin of the Central Asian Orogenic belt, providing a good chance to reveal the crustal evolution of the Central Asian Orogenic Belt. In this study, a series of Late Paleozoic granitic dykes striking vertically to the suture zone were recognized in Akejila, northwest of Ulungur of East Junggar. Their timing of emplacement and petrogenesis are critical to understand the tectono-crustal evolution of the study area. SHRIMP zircon U-Pb dating yielded a Late Permian age (266±2 Ma). Geochemical analyses indicate that they are characterized by relatively high concentration of silica (SiO2=75.66%~76.69%) and alkali (Na2O+K2O=8.67%~9.16%), but low calcium (CaO =0.06%~0.14%) and magnesia (MgO =0.04%~0.06%)content. The obvious negative Eu anomaly (δEu=0.16~0.18), relative depletion of Ba, Sr, P and Ti, and significant enrichment of Nb, Zr, Th, Ta and Hf, as well as high Ga/Al value (>2.6) characterize the weakly peraluminous A1 type granites. The positive εNd(t) value (+4.7) and a young model age (655 Ma) suggest that these dykes are mainly derived from the juvenile mantle. Therefore, the comprehensive analysis indicates that the dykes were formed by the partial melting of the juvenile lower crust caused by the upwelling of the mantle in a post-collision setting.

  • 加载中
  • [1] Şengör A M C, Natal'in B A, Burtman V S. Evolution of Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [2] Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model[J]. Journal of Asian Earth Sciences, 2004, 23: 761-779. doi: 10.1016/j.jseaes.2004.01.006

    CrossRef Google Scholar

    [3] Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions Royal Society of Edinburgh, Earth Sciences, 2000, 91(1/2): 181-193.

    Google Scholar

    [4] Kovalenko A, Clemens J D, Savatenkov V. Petrogenetic constraints for the genesis of Archaean sanukitoid suites: geochemistry and isotopic evidence from Karelia, Baltic Shield[J]. Lithos, 2005, 79(1/2): 147-160.

    Google Scholar

    [5] Windley B F, Garde A A. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues[J]. Earth Science Reviews, 2009, 93(1/2): 1-30.

    Google Scholar

    [6] 肖文交, 方爱民, 李继亮, 等. 西昆仑造山带复式增生楔的构造特征与演化[J]. 新疆地质, 2003, (1): 31-36. doi: 10.3969/j.issn.1000-8845.2003.01.005

    CrossRef Google Scholar

    [7] Xiao W J, Kröner A, Windley B F. Geodynamic Evolution of Central Asia in the Paleozoic and Mesozoic[J]. International Journal of Earth Sciences, 2009, 98: 1185-1188. doi: 10.1007/s00531-009-0418-4

    CrossRef Google Scholar

    [8] Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309: 221-270. doi: 10.2475/03.2009.02

    CrossRef Google Scholar

    [9] Xiao W J, Huang B, Han C M, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18(2): 253-273.

    Google Scholar

    [10] 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, (1): 4-8. doi: 10.3969/j.issn.1000-8845.2008.01.002

    CrossRef Google Scholar

    [11] Wang T, Tong Y, Zhang L, et al. Phanerozoicgranitoids in the central and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 2017, 145: 368-392. doi: 10.1016/j.jseaes.2017.06.029

    CrossRef Google Scholar

    [12] 董连慧, 屈迅, 朱志新, 等. 新疆大地构造演化与成矿[J]. 新疆地质, 2010, 28(4): 351-357. doi: 10.3969/j.issn.1000-8845.2010.04.002

    CrossRef Google Scholar

    [13] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, (5): 1077-1086.

    Google Scholar

    [14] 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015

    CrossRef Google Scholar

    [15] 李锦轶, 肖序常. 对新疆地壳结构与构造演化几个问题的简要评述[J]. 地质科学, 1999, (4): 3-5.

    Google Scholar

    [16] 王涛, 王晓霞, 郭磊, 等. 花岗岩与大地构造[J]. 岩石学报, 2017, 33(5): 1459-1478.

    Google Scholar

    [17] 童英, 王涛, 洪大卫, 等. 北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 619-641. doi: 10.3969/j.issn.1000-6524.2010.06.003

    CrossRef Google Scholar

    [18] 胡霭琴, 韦刚健, 邓文峰, 等. 阿尔泰地区青河县西南片麻岩中锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2006, (1): 1-10.

    Google Scholar

    [19] 张峰, 陈建平, 徐涛, 等. 东准噶尔晚古生代依旧存在俯冲消减作用——来自石炭纪火山岩岩石学、地球化学及年代学证据[J]. 大地构造与成矿学, 2014, 38(1): 140-156.

    Google Scholar

    [20] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23.

    Google Scholar

    [21] 刘家远, 喻亨祥, 吴郭泉. 新疆东准噶尔两类碱性花岗岩及其地质意义[J]. 矿物岩石地球化学通报, 1999, (2): 3-5.

    Google Scholar

    [22] 忻建刚, 袁奎荣, 刘家远. 新疆东准噶尔北部碱性花岗岩的特征、成因及构造意义[J]. 大地构造与成矿学, 1995, (3): 214-226.

    Google Scholar

    [23] Su Y, Zheng J, Griffin W L, et al. Geochemistry and geochronology of Carboniferous volcanic rocks in the easternJunggar terrane, NW China: Implication for a tectonic transition[J]. Gondwana Research. 2012, 22(3/4): 1009-1029.

    Google Scholar

    [24] 郭芳放, 姜常义, 卢荣辉, 等. 新疆北部卡拉麦里地区黄羊山碱性花岗岩的岩石成因[J]. 岩石学报, 2010, 26(8): 2357-2373.

    Google Scholar

    [25] 刘家远, 喻亨祥, 吴郭泉. 新疆北部卡拉麦里富碱花岗岩带的碱性花岗岩与锡矿[J]. 有色金属矿产与勘查, 1997, (3): 2-8.

    Google Scholar

    [26] 白建科, 陈隽璐, 彭素霞. 新疆奇台县黄羊山岩浆热液型石墨矿床含矿岩体年代学与地球化学特征[J]. 岩石学报, 2018, 34(8): 2327-2340.

    Google Scholar

    [27] Tong Y, Wang T, Jahn B M, et al. Post-accretionary Permian granitoids in the Chinese Altai orogen: geochronology, petrogenesis and tectonic implications[J]. American Journal of Science, 2014, 314(1): 80-109. doi: 10.2475/01.2014.03

    CrossRef Google Scholar

    [28] Han B F, Wang S G, Jahn B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4): 135-159.

    Google Scholar

    [29] 刘家远, 袁奎荣. 新疆乌伦古富碱花岗岩带碱性花岗岩成因及其形成构造环境[J]. 高校地质学报, 1996, (3): 18-22.

    Google Scholar

    [30] 薛春纪, 赵战锋, 吴淦国, 等. 中亚构造域多期叠加斑岩铜矿化: 以阿尔泰东南缘哈腊苏铜矿床地质、地球化学和成岩成矿时代研究为例[J]. 地学前缘, 2010, 17(2): 53-82.

    Google Scholar

    [31] Chen Y, Wang Y, Wang J, et al. Zircon U-Pb Age, Geochemistry and geological implication of the 255 Ma Alkali-rich dykes from Ulungur Area, North Xinjiang[J]. Journal of Earth Science, 2013, 24(4): 519-528. doi: 10.1007/s12583-013-0346-x

    CrossRef Google Scholar

    [32] Liu W, Liu X, Liu L. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes[J]. Lithos, 2013, 179: 293-319. doi: 10.1016/j.lithos.2013.08.009

    CrossRef Google Scholar

    [33] 王式洸, 韩宝福, 洪大卫, 等. 新疆乌伦古河碱性花岗岩的地球化学及其构造意义[J]. 地质科学, 1994, (4): 373-383.

    Google Scholar

    [34] 赵振华, 王中刚, 邹天人, 等. 新疆乌伦古富碱侵入岩成因探讨[J]. 地球化学, 1996, (3): 205-220. doi: 10.3321/j.issn:0379-1726.1996.03.001

    CrossRef Google Scholar

    [35] 赵阳. 东准噶尔恰库尔图地区石炭纪碱性花岗岩地球化学特征及构造环境[D]. 中国地质大学(北京)硕士学位论文, 2020.

    Google Scholar

    [36] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48(S1): 26-30.

    Google Scholar

    [37] Bunkley-Williams L, Williams E H. Ability of Pederson Cleaner Shrimp To Remove Juveniles of the Parasitic Cymothoid Isopod, Anilocra Haemuli, From the Host[J]. Crustaceana, 1998, 7(18): 862-869.

    Google Scholar

    [38] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1): 155-170.

    Google Scholar

    [39] Ludwig K R. Eliminating mass-fractionation effects on U-Pb isochron ages without double spiking[J]. Geochimica Et Cosmochimica Acta, 2001, 65(18): 3139-3145. doi: 10.1016/S0016-7037(01)00637-8

    CrossRef Google Scholar

    [40] 张建军, 童英, 王涛, 等. 新疆东准噶尔琼河坝地区绿石沟早石炭世岩体中基性岩墙群成因及其构造动力学背景[J]. 岩石矿物学杂志, 2019, 38(5): 606-630. doi: 10.3969/j.issn.1000-6524.2019.05.002

    CrossRef Google Scholar

    [41] Vianna S Q, Lafon J M, Milhomem N J O M, et al. U-Pb geochronology, Nd-Hf isotopes, and geochemistry of Rhyacian granitoids from the Paleoproterozoic Louren? o domain(Brazil), southeastern Guiana Shield[J]. Journal of South American Earth Sciences, 2020, 104.

    Google Scholar

    [42] Jahn B M, Condie K C. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm+Nd isotopic analyses of intracratonic pelites[J]. Geochimica Et Cosmochimica Acta, 1995, 59(11): 2239-2258. doi: 10.1016/0016-7037(95)00103-7

    CrossRef Google Scholar

    [43] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemicalcharacteristics[J]. Contributions to Mineralogy and Petrology, 1987, 95: 420-436. doi: 10.1007/BF00402203

    CrossRef Google Scholar

    [44] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [45] Wang S, Han B, Hong D, et al. Geochemistry and tectonic significance of alkali granites along theUlungur River, Xinjiang[J]. Chinese journal of geochemistry, 1995, 14(4): 323-335. doi: 10.1007/BF02872631

    CrossRef Google Scholar

    [46] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [47] Shellnutt J G, Jahn B M, Dostal J. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119(1/2): 34-46.

    Google Scholar

    [48] Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [49] 韩宝福, 王式洸, 孙元林, 等. 新疆乌伦古河碱性花岗岩Nd同位素特征及其对显生宙地壳生长的意义[J]. 科学通报, 1997, (17): 1829-1832. doi: 10.3321/j.issn:0023-074X.1997.17.011

    CrossRef Google Scholar

    [50] 许保良. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, (3): 113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011

    CrossRef Google Scholar

    [51] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [52] Shen X, Zhang H, Wang Q, et al. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of "A2-type" granites[J]. Journal of Asian Earth Sciences, 2011, 42(5): 986-1007. doi: 10.1016/j.jseaes.2010.10.004

    CrossRef Google Scholar

    [53] Creaser R A, Fanning C M. A U-Pb zircon study of the Mesoproterozoic Charleston Granite, Gawler Craton, South Australia[J]. Australian Journal of Earth Sciences, 1993, 40(6): 519-526. doi: 10.1080/08120099308728101

    CrossRef Google Scholar

    [54] Harris N B W, Marzouki F M H, Ali S. The Jabel Sayid complex, Arabian Shield: geochemical constraints on the origin of peralkaline and related granites[J]. Journal of the Geological Society, 1986, 143(2): 287-295. doi: 10.1144/gsjgs.143.2.0287

    CrossRef Google Scholar

    [55] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their Petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173.

    Google Scholar

    [56] Frindt S, Trumbull R B, Romer R L. Petrogenesis of the Gross Spitzkoppe topaz granite, central western Namibia: a geochemical and Nd-Sr-Pb isotope study[J]. Chemical Geology, 2004, 206(1/2): 43-71.

    Google Scholar

    [57] Harris L B, Li Z. Palaeomagnetic dating and tectonic significance of dolerite intrusions in the Albany Mobile Belt, Western Australia[J]. Earth and Planetary Science Letters, 1995, 131(3): 143-164.

    Google Scholar

    [58] Montero P, Bea F, Corretgé L G, et al. U-Pb ion microprobe dating and Sr and Nd isotope geology of the Galieiro Igneous Complex: A model for the peraluminous/peralkaline duality of the Cambro-Ordovician magmatism of Iberia[J]. Lithos, 2009, 107(3/4): 227-238.

    Google Scholar

    [59] Moreno J A, Molina J F, Bea F, et al. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex(S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites[J]. Lithos, 2016, 258/259: 173-196. doi: 10.1016/j.lithos.2016.04.020

    CrossRef Google Scholar

    [60] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4): 347-359.

    Google Scholar

    [61] 王强, 赵振华, 许继峰, 等. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义[J]. 岩石学报, 2006, (1): 11-30.

    Google Scholar

    [62] Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1): 115-134.

    Google Scholar

    [63] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [64] 阿里木江·艾合买提, 宫相宽, 李咸阳, 等. 东准噶尔东北缘阿舒达斯晚石炭世碱性花岗岩SHRIMP锆石U-Pb定年、岩石地球化学特征及构造意义[J]. 新疆地质, 2020, 38(2): 184-191.

    Google Scholar

    [65] 王式洸, 韩宝福, 洪大卫, 等. 新疆乌伦古河碱性花岗岩的地球化学及其构造意义[J]. 地质科学, 1994, (4): 373-383.

    Google Scholar

    [66] 张海军, 朱伯鹏, 吴晓贵. 新疆蕴都卡拉A型碱性花岗岩岩石地球化学特征及其构造意义[J]. 中山大学学报(自然科学版), 2019, 58(1): 39-49.

    Google Scholar

    [67] 张东阳, 高阳, 苏慧敏, 等. 新疆东准噶尔北部扎河坝富碱花岗质岩石矿物学特征及物理化学条件[J]. 矿物岩石, 2007, (4): 30-38.

    Google Scholar

    [68] Liu W. Fluid-rock interaction during subsolidus microtextural development of alkali granite as exemplified by the Saertielieke pluton, Ulungur of the northern Xinjiang, China[J]. Chemical Geology, 2002, 182(2): 473-482.

    Google Scholar

    [69] Wang S, Han B, Hong D, et al. Geochemistry and tectonic significance of alkali granites along theUlungur River, Xinjiang[J]. Chinese Journal of Geochemistry, 1995, 14: 323-335. doi: 10.1007/BF02872631

    CrossRef Google Scholar

    [70] Chen Y F, Wang Y W, Wang J B, et al. Zircon U-Pb Age, Geochemistry and Geological Implication of the 255 Ma Alkali-Rich Dykes from Ulungur Area, North Xinjiang[J]. Journal of Earth Science, 2013, 24(4): 519-528. doi: 10.1007/s12583-013-0346-x

    CrossRef Google Scholar

    [71] 邓江红, 王道永. 新疆富蕴扎河坝地区蛇绿岩带基本特征及大地构造意义[J]. 成都理工学院学报, 1995, (4): 8-14.

    Google Scholar

    [72] 甘林, 唐红峰, 韩宇捷. 新疆东准噶尔野马泉花岗岩体的年龄和地球化学特征[J]. 岩石学报, 2010, 26(8): 2374-2388.

    Google Scholar

    [73] 李秉政. 东准噶尔卡拉麦里增生楔蛇绿混杂岩物质组成及就位机制[D]. 新疆大学硕士学位论文, 2019.

    Google Scholar

    [74] 刘阁, 杨硕, 靳刘圆, 等. 东准噶尔乌尊塔格辉长岩LA-ICP-MS锆石U-Pb年龄、地质地球化学特征及构造意义[J]. 新疆地质, 2019, 37(2): 139-145.

    Google Scholar

    [75] 熊双才, 杨俊弢, 张征峰, 等. 东准噶尔老爷庙地区早石炭世黑山头组火山岩地质、地球化学特征及构造环境分析[J]. 新疆地质, 2019, 37(2): 194-200.

    Google Scholar

    [76] 杨高学, 李永军, 司国辉, 等. 东准库布苏南岩体LA-ICP-MS锆石U-Pb测年[J]. 中国地质, 2008, (5): 849-858.

    Google Scholar

    [77] 杨高学, 李永军, 吴宏恩, 等. 东准噶尔卡拉麦里地区黄羊山花岗岩和包体LA-ICP-MS锆石U-Pb测年及地质意义[J]. 岩石学报, 2009, 25(12): 3197-3207.

    Google Scholar

    [78] 杨高学, 李永军, 司国辉, 等. 东准噶尔贝勒库都克铝质A型花岗岩微量元素地球化学特征及地质意义[J]. 地球科学与环境学报, 2010, 32(1): 34-39.

    Google Scholar

    [79] 郑海峰, 刘阁, 靳刘园, 等. 东准噶尔卡拉麦里地区六棵树组火山岩年代学、地球化学及构造意义[J]. 新疆地质, 2019, 37(4): 457-463.

    Google Scholar

    [80] 朱笑青, 王中刚, 王元龙, 等. 新疆后造山碱性花岗岩的地质特征[J]. 岩石学报, 2006, (12): 2945-2956.

    Google Scholar

    [81] Jiang X Y, Ling M X, Kai W, et al. Insights into the origin of coexisting A1 and A2 type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China[J]. Lithos, 2018, 318/319: S480186278.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1723) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint