2021 Vol. 40, No. 1
Article Contents

WANG Shuai, LI Yingjie, WANG Jinfang, DONG Peipei, LI Hongyang, GUO Leiliang, WANG Xuanchen. Discovery of Late Carboniferous adakite in Manita, Inner Mongolia, and its constrains on intra-oceanic subduction in eastern Paleo-Asian Ocean[J]. Geological Bulletin of China, 2021, 40(1): 82-94.
Citation: WANG Shuai, LI Yingjie, WANG Jinfang, DONG Peipei, LI Hongyang, GUO Leiliang, WANG Xuanchen. Discovery of Late Carboniferous adakite in Manita, Inner Mongolia, and its constrains on intra-oceanic subduction in eastern Paleo-Asian Ocean[J]. Geological Bulletin of China, 2021, 40(1): 82-94.

Discovery of Late Carboniferous adakite in Manita, Inner Mongolia, and its constrains on intra-oceanic subduction in eastern Paleo-Asian Ocean

More Information
  • The Late Carboniferous Manita adakite distributed along the Hegenshan suture zone in the eastern part of the Xingmeng Orogenic Belt was discovered to be outcropped in the northern section of Diyanmiao SSZ ophiolite in Xiwuqi, Inner Mongolia.It consists mainly of granodiorite and plagiogranite, which belongs to low-K tholeiitic and Calc alkaline series, chemically characterized by 61.91%~75.16% of SiO2, 13.54%~17.42% of A12O3, and 0.33%~2.49% of MgO, with intensively rich in Na2O (4.58%~5.48%), poor in K2O (0.40%~2.08%) and high ratio of Na2O/K2O (2.35~12.96).The Manita adakite also manifests high Sr (309.55×10-6~433.99×10-6) and poor Y (3.74×10-6~14.66×10-6), with relatively enriched large ion lithophile elements (LILE) K, Rb, Sr, and depleted high field strength elements (HFSE) Nb, Ta, Zr, Ti and P, etc.In addition, it features low ∑REE (35.79×10-6~70.10×10-6) and clear REE fractionation((La/Yb)N=1.59~10.11), without obvious Eu anomaly (δEu=0.91~1.51), and contains Yb (0.60×10-6~1.86×10-6).All of the geochemical characteristics indicate that the Manita pluton belongs to typical adakite.The U-Pb age of LA-ICP-MS zircon is 315.76±0.94 Ma, indicating that the formation age of Manita adakite is Late Carboniferous.The Manita adakite, Diyanmiao SSZ ophiolite, fore arc basalt and Baiyinhushu trondhjemite constitute the intra-oceanic subduction rock assemblage, which indicates that the eastern part of the Paleo-Asian Ocean was not closed in the Late Carboniferous and was in the process of subduction and extinction.

  • 加载中
  • [1] Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    [2] 王焰, 张旗, 钱青. 埃达克(adakite)的地球化学特征及其构造意义[J]. 地质科学, 2000, 35(2): 251-256. doi: 10.3321/j.issn:0563-5020.2000.02.016

    CrossRef Google Scholar

    [3] 王强, 许继锋, 王建新, 等. 北大别山adakite型灰色片麻岩的确定及其与超高压变质作用的关系[J]. 科学通报, 2000, 45(10): 1017-1024. doi: 10.3321/j.issn:0023-074X.2000.10.002

    CrossRef Google Scholar

    [4] 王强, 许继锋, 赵振华. 一种新的火成岩——埃达克岩的研究综述[J]. 地球科学进展, 2001, 16(2): 20l-208.

    Google Scholar

    [5] 许继峰, 梅厚钧, 于学元, 等. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物[J]. 科学通报, 2001, 46(8): 684-688. doi: 10.3321/j.issn:0023-074X.2001.08.016

    CrossRef Google Scholar

    [6] Marc J D, Xu J F, Pavel K, et al. Adakites: Some variation on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-140.

    Google Scholar

    [7] Drummond M S, Defant M J. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13): 21503-21521. doi: 10.1029/JB095iB13p21503

    CrossRef Google Scholar

    [8] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155

    CrossRef Google Scholar

    [9] Samaniego P, Martin H. Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slahmelts and mantle wedge interactions[J]. Geology, 2002, 30(11): 967-970. doi: 10.1130/0091-7613(2002)030<0967:TFCATA>2.0.CO;2

    CrossRef Google Scholar

    [10] 刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, 2003, 77(3): 317-330. doi: 10.3321/j.issn:0001-5717.2003.03.004

    CrossRef Google Scholar

    [11] Kay R W, Kay S M. Andean adakites: three ways to make them[J]. Acta Petrologica Sinica, 2002, 18(3): 303-311.

    Google Scholar

    [12] Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust[J]. Geology, 2002, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    CrossRef Google Scholar

    [13] Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary ence Letters, 2004, 220(1/2): 139-155.

    Google Scholar

    [14] Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    CrossRef Google Scholar

    [15] Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 265(1/2): 123-137.

    Google Scholar

    [16] 唐克东. 中朝陆台北侧褶皱带构造发展的几个问题[J]. 现代地质, 1989, 3(2): 195-204.

    Google Scholar

    [17] 邵济安. 中朝板块北缘中段地壳演化[M]. 北京: 北京大学出版社, 1991: 1-136.

    Google Scholar

    [18] 徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学(D辑), 1997, 27(3): 227-232.

    Google Scholar

    [19] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [20] Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China[J]. Earth & Planetary Science Letters, 2002, 202(1): 89-104.

    Google Scholar

    [21] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1-21.

    Google Scholar

    [22] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [23] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 348-370.

    Google Scholar

    [24] 李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 2015, 31(5): 1461-1470.

    Google Scholar

    [25] 李英杰, 王金芳, 王根厚, 等. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J]. 岩石学报, 2018, 34(2): 469-482.

    Google Scholar

    [26] 徐备, 赵盼, 鲍庆中, 等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 2014, 30(7): 1841-1857.

    Google Scholar

    [27] 唐克东, 张允平. 内蒙古缝合带的构造演化[C]//肖序常, 汤耀庆. 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社, 1991: 30-54.

    Google Scholar

    [28] Xiao W J, Windley B F, Huang B C. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

    CrossRef Google Scholar

    [29] Jian P, Liu D Y, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2): 169-190.

    Google Scholar

    [30] 刘建峰, 李锦轶, 迟效国, 等. 内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境[J]. 地质学报, 2014, 88(9): 1677-1690.

    Google Scholar

    [31] 石玉若, 刘翠, 邓晋福, 等. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J]. 岩石学报, 2014, 30(11): 3155-3171.

    Google Scholar

    [32] 刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376.

    Google Scholar

    [33] 陈斌, 赵国春. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 2001, 47(4): 361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005

    CrossRef Google Scholar

    [34] 孙德有, 吴福元, 张艳斌, 等. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 2004(2): 174-181.

    Google Scholar

    [35] 刘建峰, 李锦轶, 孙立新, 等. 内蒙古巴林左旗九井子蛇绿岩锆石U-Pb定年: 对西拉木伦河缝合带形成演化的约束[J]. 中国地质, 2016, 43(6): 1947-1962.

    Google Scholar

    [36] 李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗迪彦庙蛇绿岩的识别[J]. 岩石学报, 2012, 28(4): 1282-1290.

    Google Scholar

    [37] 李英杰, 王金芳, 李红阳, 等. 内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J]. 岩石学报, 2013, 29(8): 2719-2730.

    Google Scholar

    [38] 王金芳, 李英杰, 李红阳, 等. 内蒙古乌兰沟埃达克岩锆石U-Pb年龄及构造环境[J]. 地质通报, 2018, 37(10): 1933-1943.

    Google Scholar

    [39] 王金芳, 李英杰, 李红阳, 等. 贺根山缝合带白音呼舒奥长花岗岩锆石U-Pb年龄地球化学特征及构造意义[J]. 地质评论, 2019, 65(4): 857-872.

    Google Scholar

    [40] 王金芳, 李英杰, 李红阳, 等. 内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J]. 地质学报, 2017, 91(8): 1776-1795. doi: 10.3969/j.issn.0001-5717.2017.08.009

    CrossRef Google Scholar

    [41] Li Y J, Wang G H, Santosh M, et al. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2018, 59: 126-143. doi: 10.1016/j.gr.2018.02.018

    CrossRef Google Scholar

    [42] Li Y J, Wang G H, Santosh M, et al. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia[J]. Earth and Planetary Science Letters, 2020, 535: 116087. doi: 10.1016/j.epsl.2020.116087

    CrossRef Google Scholar

    [43] Li Y J, Wang J F, Xin H T, et al. Subduction initiation in the southeastern Palaeo-Asian Ocean: Constraints from early Permian adakites in suprasubduction zone ophiolites, central Inner Mongolia, North China[J]. Geological Journal, 2020, 55(3): 2044-2061. doi: 10.1002/gj.3696

    CrossRef Google Scholar

    [44] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.

    Google Scholar

    [45] Anderson T. Correction of commen lead U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [46] Yuan H L, Gao S, Liu X M. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [47] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, 29(S1): 600-601.

    Google Scholar

    [48] Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms 2nd Edition[M]. Cambridge: Cambridge University Press, 2002: 33-39.

    Google Scholar

    [49] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkeyu[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [50] Martin H, Smithies R H, Rapp R, et al. An overview of adakite tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24.

    Google Scholar

    [51] Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, 1984: 63-114.

    Google Scholar

    [52] Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[C]//Sauders A D, Norry M J. Geological Society of London. Special Publication, 1989: 313-345.

    Google Scholar

    [53] Defant M J, Drummond M S. Derivation of some modern arc magmas by of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [54] Kelemen P B, Hangh K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2007, 3: 1-70.

    Google Scholar

    [55] Claesson S, Vetrin V, Bayanova T, et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51(1): 95-108.

    Google Scholar

    [56] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [57] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171(3): 223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x

    CrossRef Google Scholar

    [58] Pidgeon R T, Nemchin A A, Hitches G J. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages[J]. Contributions to Mineralogy and Petrology, 1998, 132(3): 288-299. doi: 10.1007/s004100050422

    CrossRef Google Scholar

    [59] Michael P A, Nick P. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6414): 144-146.

    Google Scholar

    [60] 张旗, 王二七, 王焰, 等. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 2001, 36(2): 248-255. doi: 10.3321/j.issn:0563-5020.2001.02.014

    CrossRef Google Scholar

    [61] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [62] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [63] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F. Marginal basin geology. Geological Society of London Special Publication, 1984: 77-94.

    Google Scholar

    [64] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48.

    Google Scholar

    [65] 薛怀民, 郭利军, 侯增谦, 等. 大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学[J]. 岩石矿物学杂志, 2010, 29(6): 811-823. doi: 10.3969/j.issn.1000-6524.2010.06.016

    CrossRef Google Scholar

    [66] 鲍庆中, 张长捷, 吴之理, 等. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报(地球科学版), 2007, 37(1): 15-23.

    Google Scholar

    [67] 杨俊泉, 张素荣, 刘永顺, 等. 内蒙古东乌旗莫合尔图石炭纪闪长岩的发现: 来自锆石U-Pb年代学的证据[J]. 现代地质, 2014, 28(3): 472-477. doi: 10.3969/j.issn.1000-8527.2014.03.003

    CrossRef Google Scholar

    [68] 朱俊宾, 孙立新, 任纪舜, 等. 内蒙古东乌旗地区格根敖包组火山岩锆石LA-MC-ICP-MS U-Pb年龄及其地质意义[J]. 地球学报, 2015, 36(4): 466-472.

    Google Scholar

    [69] 程新彬, 何付兵, 王玮, 等. 内蒙古东乌珠穆沁旗查干敖包花岗岩体时代、成因及地质意义[J]. 现代地质, 2017, 31(3): 508-520. doi: 10.3969/j.issn.1000-8527.2017.03.008

    CrossRef Google Scholar

    [70] 王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的约束[J]. 地质学报, 2017, 91(7): 1467-1482. doi: 10.3969/j.issn.0001-5717.2017.07.005

    CrossRef Google Scholar

    [71] Sengor A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [72] 刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376.

    Google Scholar

    [73] 公繁浩, 黄欣, 郑月娟, 等. 内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义[J]. 地质与资源, 2013, 22(6): 478-483. doi: 10.3969/j.issn.1671-1947.2013.06.007

    CrossRef Google Scholar

    [74] Shang Q H. The discovery and significance of Permian radiolarians in the northern and middle Inner Mongolia, Northern Orogenic belt[J]. Chinese Science Bulletin, 2004, 49(24): 2574-2579. doi: 10.1360/csb2004-49-24-2574

    CrossRef Google Scholar

    [75] 曾俊杰, 郑有业, 齐建宏, 等. 内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J]. 地球科学, 2008, 33(6): 755-763. doi: 10.3321/j.issn:1000-2383.2008.06.003

    CrossRef Google Scholar

    [76] 张玉清. 内蒙古苏尼特左旗巴音乌拉二叠纪埃达克质花岗闪长岩类地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2009, 28(4): 33-42.

    Google Scholar

    [77] 郝百武. 内蒙古那仁乌拉埃达克质花岗岩的发现、成因、锆石U-Pb年龄及其构造意义[J]. 矿物岩石, 2012, 32(1): 28-39. doi: 10.3969/j.issn.1001-6872.2012.01.005

    CrossRef Google Scholar

    [78] 刘军, 武广, 李铁刚, 等. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学、地球化学、Sr-Nd同位素组成及其地质意义[J]. 岩石学报, 2014, 30(1): 95-108.

    Google Scholar

    [79] 邓晋福, 冯艳芳, 狄永军, 等. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 2015, 61(3): 473-484.

    Google Scholar

    [80] Safonova I, Kotlyarov A, Krivonogov S, et al. Intra-oceanic arcs of the Paleo-Asian Ocean[J]. Gondwana Research, 2017, 50: 167-194. doi: 10.1016/j.gr.2017.04.005

    CrossRef Google Scholar

    [81] 薛建平, 苏尚国, 李成元, 等. 内蒙古索伦山地区蛇绿岩岩石单元地质特征、就位机制及时限[J]. 现代地质, 2017, 31(3): 498-507. doi: 10.3969/j.issn.1000-8527.2017.03.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1392) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint