2021 Vol. 40, No. 5
Article Contents

YU Tao, ZHOU Xin, FAN Bingliang, SHI Nan, HE Jianjuan, YU Jiashu, YI Jinlong. Petrogeochemical and Pb-Nd-Sr isotope characteristics of ultrabasic rocks in the Yizhuxingla area, Eastern Tibet[J]. Geological Bulletin of China, 2021, 40(5): 687-697.
Citation: YU Tao, ZHOU Xin, FAN Bingliang, SHI Nan, HE Jianjuan, YU Jiashu, YI Jinlong. Petrogeochemical and Pb-Nd-Sr isotope characteristics of ultrabasic rocks in the Yizhuxingla area, Eastern Tibet[J]. Geological Bulletin of China, 2021, 40(5): 687-697.

Petrogeochemical and Pb-Nd-Sr isotope characteristics of ultrabasic rocks in the Yizhuxingla area, Eastern Tibet

More Information
  • The field geological survey and petrology study of the ultrabasic rocks in the Yizhuxingla area of the eastern Bangonghu-Nujiang suture zone show that the rocks in this area are strongly serpentinized peridotite.Geochemical studies show that these rocks are rich in MgO (45.33%~47.70%), poor in CaO (0.15%~0.37%) and Al2O3 (0.08%~0.39%), and deficient in TiO2 (0.011%~0.014%).Its total content of REE is lower than that in the primitive mantle, and the REE distribution pattern is gentle to the right, the fractionation of light and heavy REE is obvious, and there are obvious positive Eu anomaly and weak negative Ce anomaly.Transition metal elements show an asymmetric W-type distribution pattern, forming obvious negative Ti and Cu anomalies, and the rocks have high (87Sr/86Sr)i and low εNd(t) characteristics.The above characteristics indicate that the ultrabasic rocks in the Yizhuxingla area is similar to SSZ type mantle peridotite.The depleted mantle rocks resulted form the partial meltingof original mantle(15%~25%).These ultrabasic rocks were formed in the oceanic island arc environment and had mixing of 20%~40% crustal material during the subduction process.

  • 加载中
  • [1] 曹圣华, 廖六根, 邓世权, 等. 西藏班公湖蛇绿岩组合层序、地球化学及其成因研究[J]. 沉积与特提斯地质, 2005, 25(3): 101-110. doi: 10.3969/j.issn.1009-3850.2005.03.016

    CrossRef Google Scholar

    [2] 江军华, 王瑞江, 曲晓明, 等. 西藏班公湖岛弧带含硫化镍超基性岩的源区性质与基底背景[J]. 矿床地质, 2009, 28(6): 793-802. doi: 10.3969/j.issn.0258-7106.2009.06.008

    CrossRef Google Scholar

    [3] 黄启帅, 史仁灯, 丁炳华, 等. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约[J]. 岩石矿物学杂志, 2012, 31(4): 465-478. doi: 10.3969/j.issn.1000-6524.2012.04.001

    CrossRef Google Scholar

    [4] 秦雅东, 李德威, 刘德民, 等. 班公湖中特提斯洋打开的时限: 来自MOR型辉长岩的年代学制约[J]. 大地构造与成矿学, 2017, 41(6): 1148-1157.

    Google Scholar

    [5] 史仁灯, 杨经绥, 许志琴, 等. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据[J]. 岩石矿物学杂志, 2005, 24(5): 397-408. doi: 10.3969/j.issn.1000-6524.2005.05.008

    CrossRef Google Scholar

    [6] 史仁灯. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报, 2007, 52(2): 223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016

    CrossRef Google Scholar

    [7] 韦少港, 宋扬, 唐菊兴, 等. 西藏改则县多龙SSZ型蛇绿岩的锆石U-Pb年龄、岩石地球化学及Sr-Nd同位素特征: 班公湖-怒江洋晚二叠世洋内俯冲的证据[J]. 岩石学报, 2019, 35(2): 505-522.

    Google Scholar

    [8] 罗伟, 李佑国, 彭静. 西藏班公湖地区富镍硫化物超基性岩的成因[J]. 矿物岩石, 2016, 36(3): 29-36.

    Google Scholar

    [9] Mei H J, Liu X N, Chi J X, et al. On ophiolite system on Qinghai-Xizang plateau with particular reference to its genesis in West Xizang[C]//Geological studies of Qinghai-Xizang plateau. Beijing: Science Press, 1981: 545-556.

    Google Scholar

    [10] Pearce J A, Deng W M. The ophiolites of the Tibet geotraverse Lhasa to Golmud(1985) and Lhasa to Kathmandu(1986)[J]. Philosoplical Transactions of the Royal Society, 1988, 327(1594): 215-238.

    Google Scholar

    [11] Dunlap W J, Wysoczanski R. Thermal evidence for early Cretaceous metamorphism in the Shyok suture zone and age of the Khardung volcanic rocks, Ladakh, India[J]. J. Asia Earth Science, 2002, (20): 481-490.

    Google Scholar

    [12] 张旗, 杨瑞英. 西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J]. 科学通报, 1985, (16): 1243-1245.

    Google Scholar

    [13] 张旗, 杨瑞英. 西藏丁青蛇绿岩中玻镁安山岩类侵入岩的地球化学特征[J]. 岩石学报, 1987, (2): 64-74. doi: 10.3321/j.issn:1000-0569.1987.02.006

    CrossRef Google Scholar

    [14] 黄婉康, 王岩国, 张旗, 等. 丁青和新喀里多尼亚玻安岩类的辉石及其超微结构[J]. 矿物学报, 1993, (2): 115-123, 198-199. doi: 10.3321/j.issn:1000-4734.1993.02.004

    CrossRef Google Scholar

    [15] 王玉净, 王建平, 刘彦明, 等. 西藏丁青蛇绿岩特征、时代及其地质意义[J]. 微体古生物学报, 2002, (4): 417-420. doi: 10.3969/j.issn.1000-0674.2002.04.009

    CrossRef Google Scholar

    [16] 王玉净, 王建平, 裴放. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J]. 微体古生物学报, 2002, 19(4): 323-336. doi: 10.3969/j.issn.1000-0674.2002.04.001

    CrossRef Google Scholar

    [17] 强巴扎西, 谢尧武, 吴彦旺, 等. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J]. 地质通报, 2009, 28(9): 1253-1258. doi: 10.3969/j.issn.1671-2552.2009.09.013

    CrossRef Google Scholar

    [18] 李小波. 班公湖-怒江结合带安多-丁青蛇绿岩地球化学特征及构造演化研究[D]. 中国地质大学(北京)硕士学位论文, 2016.

    Google Scholar

    [19] 潘桂棠, 丁俊, 姚东生, 等. 青藏高原及邻区地质图(1: 1500000)[M]. 成都: 成都地图出版社, 2004.

    Google Scholar

    [20] 庞小丽, 刘晓晨, 薛雍, 等. 粉晶X射线衍射法在岩石学和矿物学研究中的应用[J]. 岩矿测试, 2009, 28(5): 452-456. doi: 10.3969/j.issn.0254-5357.2009.05.011

    CrossRef Google Scholar

    [21] 孙朝阳, 杨凯, 代小吕, 等. 电感耦合等离子体质谱(ICP-MS)法测定岩石中的稀土元素[J]. 中国无机分析化学, 2015, 5(4): 48-52. doi: 10.3969/j.issn.2095-1035.2015.04.011

    CrossRef Google Scholar

    [22] 梁亚丽, 杨珍, 阿丽莉, 等. ICP-MS法测定钼矿石中伴生锂、镓和稀土元素[J]. 吉林大学学报(理学版), 2021, 59(2): 427-434.

    Google Scholar

    [23] 濮巍, 高剑峰, 赵葵东, 等. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J]. 南京大学学报(自然科学版), 2005, 41(4): 445-450. doi: 10.3321/j.issn:0469-5097.2005.04.017

    CrossRef Google Scholar

    [24] Coleman R G. Ophiolite-ancient Oceanie Lithosphere[M]. Berlin. Heidelberg, NewYork: Springer-Verlag, 1977: 1-229.

    Google Scholar

    [25] Ishiwatari A. Igneouspetrogenesis of the Yakunoophiolite (Japan) in the context of the diversity of ophiolites[J]. Contributions to Mineralogy and Petrology, 1985, 89(2): 155-167. doi: 10.1007/BF00379450

    CrossRef Google Scholar

    [26] 索波列夫HЛ., 杨凤英. 超基性岩的岩石化学[C]//地质部地质科学研究院情报研究室编. 国外超基性岩. 北京: 中国工业出版社, 1964: 37-52.

    Google Scholar

    [27] Niu Y L. Bulk-rock Major and trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-ocean Ridges[J]. Journal of Petrology, 2004, 47(45): 2423-2458.

    Google Scholar

    [28] 张旗, 张魁武, 李达周. 横断山区镁铁-超镁铁岩石[M]. 北京: 科学出版社, 1992: 9-100.

    Google Scholar

    [29] 吴利仁. 论中国基性岩、超基性岩的成矿专属性[J]. 地质科学, 1963, 4(1): 29-41.

    Google Scholar

    [30] 白文吉, 杨经绥, 胡旭峰, 等. 内蒙古贺根山蛇绿岩岩石成因和地壳增生的地球化学制约[J]. 岩石学报, 1995, 11(S1): 112-124.

    Google Scholar

    [31] Peace J A, Lippard S J, Robert S. Characteristics and tectonic significance of suprasubduction zone ophiolites[C]//Kokelaar B P, Howells M F. Marginal Basin Geology. London: Geological Society Special Publication, 1984, 16: 77-94.

    Google Scholar

    [32] Taylor S R, McLennan S M. The continental crust-Its composition and evolution, an examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific, 1985: 1-312.

    Google Scholar

    [33] Sun S S, McDonough W F. Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London Special Publications, 1989, 42: 313-345.

    Google Scholar

    [34] Faure G. Principles of Isotope Geology[M]. NewYork: John Wiley and Sons, 1986: 321-343.

    Google Scholar

    [35] Gerlach D, Cliff R A, Davies G R, et al. Magma sources of the Cape Verdes archipelago: Isotopic and trace element constraints[J]. Geochim. Cosmochim. Acta, 1988, 52(12): 2979-2992. doi: 10.1016/0016-7037(88)90162-7

    CrossRef Google Scholar

    [36] Cliff R A, Baker P E, Mateer N J. Geochemistry of inaccessible island volcanics[J]. Chemical Geology, 1991, 92(4): 251-260. doi: 10.1016/0009-2541(91)90073-Z

    CrossRef Google Scholar

    [37] Hoernle K, Tilton G, Schmincke H U. Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands[J]. Earth Planet. Sci. Letters, 1991, 106(1/4): 44-56.

    Google Scholar

    [38] Dick H J B. Partical melting in the Josephine Peridotite: Ⅰ The effect on mineral composition and its consequence for geobarometry and geothemometry[J]. American Journal of Science, 1977, 277(7): 801-832. doi: 10.2475/ajs.277.7.801

    CrossRef Google Scholar

    [39] Dick H J B, Fisher R L. Mineralogic Studies of the Residues of Mantle Melting: Abyssal and Alpline-Type Peridotites[J]. Developments in Petrology, 1984, 11(2): 295-308.

    Google Scholar

    [40] Parkinson I J, Pearce J A, Thirlwall M F, et al. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg125[M]. Proceedings of the Ocean Drilling Program Scientific Result, 1992.

    Google Scholar

    [41] Piccardo G B, ZanrttiA, Muntener O. Melt/peridotite interaction in the Southern Lanzoperidotite: Field, textural and geochermical evidence[J]. Lithos, 2007, 94(1/4): 181-209.

    Google Scholar

    [42] Macdonald R, Rogers N W. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift[J]. East Africa Journal of Petrology, 2001, 42(5): 877-900.

    Google Scholar

    [43] 周新, 冯德新, 樊炳良, 等. 西藏类乌齐地区含镍碳酸岩的发现与地质意义[J]. 矿物学报, 2020, 40(2): 109-115.

    Google Scholar

    [44] Elthon D, Stewart M, Rose D K. Composition trends of minerals in oceanic cumulates[J]. Geophy., 1992, 97(15): 189-199.

    Google Scholar

    [45] 鲍佩声. 新疆西准噶尔重点含铬岩体成矿条件及找矿方向的研究[C]//中国地质科学院地质研究所文集(24). 中国地质学会, 1992: 1-178.

    Google Scholar

    [46] 王希斌, 鲍佩声, 戌合. 中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J]. 岩石学报, 1995, (S1): 24-41.

    Google Scholar

    [47] 王希斌. 试论中国蛇绿岩成因类型及其成矿专属性[C]//蛇绿岩与地球动力学研讨会论文集. 北京地质出版社, 1996: 69-74.

    Google Scholar

    [48] 史仁灯, 杨经绥, 许志琴, 等. 西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义[J]. 科学通报, 2004, 49(12): 1179-1184. doi: 10.3321/j.issn:0023-074X.2004.12.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(883) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint