2021 Vol. 40, No. 6
Article Contents

REN Fei, YIN Fuguang, SUN Jie, XU Changhao, ZHANG Zhang, CHEN Bo. The tectonic evolution of the Garze-Litang subduction-accretionary complex in the Middle Permian Evidence from geochronology and geochemistry of the Longpan ophiolite[J]. Geological Bulletin of China, 2021, 40(6): 942-954.
Citation: REN Fei, YIN Fuguang, SUN Jie, XU Changhao, ZHANG Zhang, CHEN Bo. The tectonic evolution of the Garze-Litang subduction-accretionary complex in the Middle Permian Evidence from geochronology and geochemistry of the Longpan ophiolite[J]. Geological Bulletin of China, 2021, 40(6): 942-954.

The tectonic evolution of the Garze-Litang subduction-accretionary complex in the Middle Permian Evidence from geochronology and geochemistry of the Longpan ophiolite

  • Longpan ophiolite is located in the southern part of the Garze-Litang subduction-accretionary complex.It was selected as a research object for detailed geochemistry and chronology studies.The petrogeochemistry study shows that it is characterized by relatively low SiO2, TiO2, Na2O and K2O, and high Al2O3, CaO and MgO, revealing a feature of sub-alkaline basaltic rocks.Its signature of rare earth elements shows an affinity to enriched mid-ocean ridge basalts (E-MORB) with relatively low REE content, slight enrichment of LREE, indistinctive REE fractionation ((La/Yb)N=1.93~2.96, (La/Sm)N=1.41~1.77), without obvious Eu negative anomaly.Basalts are depleted in Sr and Nb, enriched in Nd, while diabases are depleted in Ba and Nb, enriched in Sr.Both rocks are enriched in highly incompatible elements, which shows obvious characteristics of enriched mid-ocean ridge basalts.The LA-ICP-MS U-Pb dating of zircon from the diabase yielded an age of 262.3±1.5 Ma, which indicates that the Longpan ophiolite mélange was formed in the Middle Permian.Combined with the previous achievements, it is suggested that the Garze-Litang Ocean was still in the process of continuous expansion in the Middle Permian.The discovery can enrich the research content of the Garze-Litang ophiolite mélange belt and provide direct evidence for the tectonic evolution of the Garze-Litang in Middle Permian.

  • 加载中
  • [1] 潘桂棠, 肖庆辉, 尹福光, 等. 中国大地构造[M]. 北京: 地质出版社, 2017.

    Google Scholar

    [2] 邹光富, 侯立伟, 尹显科. 甘孜-理塘蛇绿混杂岩特征及其构造意义[J]. 四川地质学报, 1994, 14(1): 17-24.

    Google Scholar

    [3] 江元生. 甘孜-理塘结合带甘孜地区混杂岩类型及成因分析[J]. 四川地质学报, 1996, 16(3): 199-203.

    Google Scholar

    [4] 姚学良, 兰艳. 甘孜-理塘蛇绿混杂岩带存在N型洋脊玄岩[J]. 四川地质学报, 2001, 21(3): 138-140. doi: 10.3969/j.issn.1006-0995.2001.03.003

    CrossRef Google Scholar

    [5] 尹显科. 甘孜-理塘断裂带北段玄武岩地球化学特征及其意义[J]. 四川地质学报, 1993, 13(3): 201-208.

    Google Scholar

    [6] 彭东, 林丽, 王全伟, 等. 甘孜-理塘结合带锰结核的发现及其地质意义[J]. 中国地质, 2011, 38(2): 442-450. doi: 10.3969/j.issn.1000-3657.2011.02.018

    CrossRef Google Scholar

    [7] 魏永峰, 罗森林. 甘孜-理塘结合带中段非史密斯地层的划分及组分特征[J]. 沉积与特提斯地质, 2004, 24(4): 22-30.

    Google Scholar

    [8] 曲晓明, 侯增谦. 从潘拥枕状玄武岩的40Ar/39Ar年龄论金沙江缝合带和甘孜-理塘缝合带的演化关系[J]. 地质论评, 2002, 48: 115-121.

    Google Scholar

    [9] 侯增谦, 侯立玮, 叶庆同, 等. 三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床[M]. 北京: 地震出版社, 1995.

    Google Scholar

    [10] 侯增谦, 卢记仁, 李红阳, 等. 中国西南特提斯构造演化-幔柱构造控制[J]. 地球学报, 1996, 17(4): 439-453.

    Google Scholar

    [11] 张世涛, 冯庆来, 王义昭. 甘孜-理塘构造带泥盆系的深水沉积[J]. 地质科技情报, 2000, (3): 17-20 doi: 10.3969/j.issn.1000-7849.2000.03.004

    CrossRef Google Scholar

    [12] 张世涛, 冯庆来. 中甸地区三叠系的沉积混杂作用[J]. 云南地质, 2000, (1): 1-7.

    Google Scholar

    [13] 莫宣学, 等. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993.

    Google Scholar

    [14] 刘宝田, 江耀明, 曲景川. 四川理塘-甘孜一带古洋壳的发现及其对板块构造的意义[C]//"三江"专著编辑委员会编. 青藏高原地质文集. 北京: 地质出版社, 1983, 12: 119-127.

    Google Scholar

    [15] 李永森, 陈炳蔚, 周伟勤. 中国西南三江特提斯洋的演化及成矿作用[C]//"三江"专著编辑委员会编. 青藏高原地质文集. 北京: 地质出版社, 1983, 15: 173-188.

    Google Scholar

    [16] 罗建宁, 张正贵. 三江特提斯沉积地质与矿矿[M]. 北京: 地质出版社, 1992.

    Google Scholar

    [17] 李兴振, 刘文均, 王义昭, 等. 西南三江地区特提斯构造演化与成矿(总论)[M]. 北京: 地质出版社, 1999.

    Google Scholar

    [18] 尹福光, 孙志明, 胡世华, 等. 中国西南三江地质图说明书(1: 1 000 000)[M]. 北京: 地质出版社, 2014.

    Google Scholar

    [19] 尹福光, 孙洁, 任飞, 等. 中国西南区域地质[M]. 武汉: 中国地质大学出版社, 2016.

    Google Scholar

    [20] 任飞, 潘桂棠, 尹福光, 等. 西南三江地区洋板块地层特征及构造演化[J]. 沉积与特提斯地质, 2017, (4): 9-16. doi: 10.3969/j.issn.1009-3850.2017.04.003

    CrossRef Google Scholar

    [21] 闫全人, 王宗起, 刘树文, 等. 西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解: 来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据[J]. 科学通报, 2005, 50(2): 158-166. doi: 10.3321/j.issn:0023-074X.2005.02.010

    CrossRef Google Scholar

    [22] 张旗, 张魁武, 李达周. 横断山区镁铁-超镁铁岩[M]. 北京: 科学出版社, 1992.

    Google Scholar

    [23] 沙绍礼. 云南中甸、四川木里接壤地带(洛吉-瓦厂)的蓝闪片岩[J]. 云南地质, 1988, 7(1): 82-85

    Google Scholar

    [24] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48: 26-30.

    Google Scholar

    [25] Nasdala L, Hofmeister W, Norbeig N, et al. Zircon M257-A honmogeneous natural reference material for the ionmicroprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32: 247-265. doi: 10.1111/j.1751-908X.2008.00914.x

    CrossRef Google Scholar

    [26] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [27] Anderson T. Correction of common lead in U-Pb analyses that donot report 204Pb[J]. Chemical Geology, 2002, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [28] 侯可军, 李延河, 田有荣. LA-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [29] 刘颖, 刘海臣, 李献华. 用ICP-MS准确测量岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(26): 552-558.

    Google Scholar

    [30] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2009, 28(4): 481-492.

    Google Scholar

    [31] 严松涛, 秦蒙, 段阳海, 等. 四川理塘地区二叠纪洋岛型岩石组合的识别及其构造意义: 来自岩石学、地球化学和年代学证据[J]. 地质学报, 2019, 93(2): 381-393. doi: 10.3969/j.issn.0001-5717.2019.02.008

    CrossRef Google Scholar

    [32] Pearce J A. Role of subcontinental lithospere in magma genesis at destructive plate margins[C]//Hawkesworth N. Continental Basalts and Mantle Xenoliths. Nantwich: Shiva, 1983: 230-249.

    Google Scholar

    [33] Sun S, McDonough W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunden S A, Orrg M. Magmatism in the Ocean Basin. London: Geological Society of London, 989, 2: 313-345.

    Google Scholar

    [34] Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elservier, 1984: 63-114.

    Google Scholar

    [35] 潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997.

    Google Scholar

    [36] 胡世华, 罗代锡, 李开元. 藏东川西三叠系沉积相及其构造意义[C]//"三江"专著编辑委员会编. 青藏高原地质文集. 北京: 地质出版社, 1983, 13: 107-128.

    Google Scholar

    [37] Winchester J A, Flody P A. Geochemical magma type discrimination: application to alterted and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1977, 28: 459-469.

    Google Scholar

    [38] 侯增谦, 莫宣学, 朱勤文, 等. "三江"古特提斯地幔热柱-洋中脊玄武岩证据[J]. 地球学报, 1996, 17(4): 362-375.

    Google Scholar

    [39] Condie K C. Geochemical changes in basalts and andsites across the Archaean-Proterozoic boundary: identification and significance[J]. Lithos, 1989, 23: 1-18. doi: 10.1016/0024-4937(89)90020-0

    CrossRef Google Scholar

    [40] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites: Orogenic Andesites and Related Rock. Chichester: Willy, 1982: 525-548.

    Google Scholar

    [41] Wilson M. Igneous Petrogenesis[M]. London: Unwin Hyman, 1989: 1-466.

    Google Scholar

    [42] Hou Z Q, Zaw K, Pan G T, et al. Sanjiang Tethyan metallogenesis in S.W. China: tection setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31(1/4): 48-87.

    Google Scholar

    [43] Glassily W. Geochemistry and tectonics of the Crescent volcanic rocks, lympic Peninsula, ashington[J]. Geological Society of America Bulletin, 1974, 5: 785-794.

    Google Scholar

    [44] Pearce J A, Hastie A R, Leat P T, et al. Comion and evolution of the Ancestral South Sandwich Arc: Implications for the flow of deep water and mantle through the Drake Passage Gateway[J]. Global and Planetary Change, 2014, 123: 298-322.

    Google Scholar

    [45] Pearce J A, Lippard S J, Roberts. Characteristics and tectonic significance of supra-subduction zone ophiolotes[C]//Kokelaar B P, Howells M F. Marginal Basin Geology. Geological Society, London: Special Publication, 1984, 16(1): 77-94.

    Google Scholar

    [46] Coleman R G. Ophiolites: Ancient Oceanic Lithosphere?[M]. Berlin, Heidellberg, New York: Springer-Verlag, 1977: 1-220.

    Google Scholar

    [47] Shervais J W. Island arc and ocean crust ophiolites: Contrasts in the pettology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges[C]//Malpas J, Moores E, Panayiotou A, et al. Ophiolites: Oceanic Crustal Analogues. Nicosia, Cyprus: The Geological Survey Department, 1990: 507-520.

    Google Scholar

    [48] 张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001: 1-200.

    Google Scholar

    四川省地质调查院. 1: 5万蟠乡幅区域地质图. 2016.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1214) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint