2021 Vol. 40, No. 6
Article Contents

FU Junyu, NA Fuchao, LI Yangchun, SUN Wei, ZHONG Hui, YANG Hao, YANG Xiaoping, ZHANG Guangyu, LIU Yingcai, YANG Yajun. Southward subduction of the Mongo-Okhotsk Ocean Middle Triassic magmatic records of the Luomahu Group in northwest of Lesser Khingan Mountains[J]. Geological Bulletin of China, 2021, 40(6): 889-904.
Citation: FU Junyu, NA Fuchao, LI Yangchun, SUN Wei, ZHONG Hui, YANG Hao, YANG Xiaoping, ZHANG Guangyu, LIU Yingcai, YANG Yajun. Southward subduction of the Mongo-Okhotsk Ocean Middle Triassic magmatic records of the Luomahu Group in northwest of Lesser Khingan Mountains[J]. Geological Bulletin of China, 2021, 40(6): 889-904.

Southward subduction of the Mongo-Okhotsk Ocean Middle Triassic magmatic records of the Luomahu Group in northwest of Lesser Khingan Mountains

More Information
  • Luomahu Group outcropped in the northwest of Lesser Xing'an Range is considered to be part of the Neoproterozoic metamorphic basement of the Xing'an Massif.Based on zircon U-Pb dating of the biotite-hornblende-plagioclase gneiss from the Luomahu Group outcropped near Woduhe Township, the results show that the age of protolith is 246±1 Ma.Combined with the related regional research data, it is suggested that the Luomahu Group is a set of tectonic complex containing geological bodies of different ages.The petrography and geochemistry of the biotite-hornblende-plagioclase gneiss indicate that the protolith is a basic magmatic rock, rich in MgO, TFeO and Mg# value, relatively rich in Na2O, low in K2O, and mediate contents of Cr, Ni and Co, similar to the average composition of the lower crust.In addition, large ion lithophile elements Rb, Ba, Sr, Th are enriched, and high field strength elements Nb, Ta, Ti, P, Hf are depleted.The in-situ εHf (t) values of zircons range from + 9.55 to + 14.43, and the Hf isotope single-stage model ages (tDM1) and two-stage model ages(tDM2) are 319~520 Ma and 350~666 Ma, respectively.The Hf isotopic composition is similar to the Phanerozoic igneous rocks of Xing'an island arc in Central Asia Orogenic Belt.It is suggested that the magma was originated from the partial melting of the "hydrated" Paleozoic hyperplasia lithospheric mantle and was mixed with continental crust materials in the Duobaoshan island arc zone, related to the southward subduction of the Mongolia-Okhotsk Ocean plate and controlled by the NNE trending intracontinental transform tectonic belt.

  • 加载中
  • [1] Seng r A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [2] 张兴洲, 周建波, 迟效国, 等. 东北地区晚古生代构造-沉积特征与油气资源[J]. 吉林大学学报(地球科学版), 2008, 38(5): 719-725.

    Google Scholar

    [3] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37(4): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    CrossRef Google Scholar

    [4] 付俊彧, 朱群, 杨雅军, 等. 中华人民共和国地质图(东北)说明书[M]. 北京: 地质出版社, 2019: 105-143.

    Google Scholar

    [5] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1989.

    Google Scholar

    [6] 苗来成, 刘敦一, 张福勤, 等. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J]. 科学通报, 2007, 52(5): 591-601. doi: 10.3321/j.issn:0023-074X.2007.05.016

    CrossRef Google Scholar

    [7] Zhou J B, Wilde S A, Zhang X Z, et al. A >1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications[J]. Tectonophysics, 2011, 509(3/4): 280-292.

    Google Scholar

    [8] 周建波, 张兴洲, Wilde S A, 等. 中国东北~500Ma泛非期孔兹岩带的确定及其意义[J]. 岩石学报, 2011, 27(4): 1235-1245.

    Google Scholar

    [9] 孙立新, 任邦方, 赵凤清, 等. 内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据[J]. 地质通报, 2013, 32(2/3): 341-352.

    Google Scholar

    [10] Ge W C, Chen J S, Yang H, et al. Tectonic implications of new zircon U-Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing'an Range, NE China[J]. Journal of Asian Earth Sciences, 2015, 106: 169-185. doi: 10.1016/j.jseaes.2015.03.011

    CrossRef Google Scholar

    [11] 赵院冬, 许逢明, 车继英, 等. 锆石U-Pb定年对大兴安岭东北部"兴华渡口群"形成时代和组成的约束[J]. 中国地质, 2017, 44(3): 575-587.

    Google Scholar

    [12] 佘宏全, 李进文, 向安平, 等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2): 571-594.

    Google Scholar

    [13] 孙巍, 迟效国, 潘世语, 等. 大兴安岭北部新林地区倭勒根群大网子组锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(1): 176-185.

    Google Scholar

    [14] 杜兵盈, 冯志强, 刘宇崴, 等. 大兴安岭环二库新元古代变质辉长岩的厘定及其地质意义[J]. 世界地质, 2017, 36(3): 751-762. doi: 10.3969/j.issn.1004-5589.2017.03.010

    CrossRef Google Scholar

    [15] 表尚虎, 赵海滨, 付俊彧. 黑龙江黑河变质地层微古植物化石的发现[J]. 中国区域地质, 2000, 19(4): 445-447. doi: 10.3969/j.issn.1671-2552.2000.04.018

    CrossRef Google Scholar

    [16] 孙巍. 兴安地块"前寒武纪变质岩系"——下古生界锆石年代学研究及其构造意义[D]. 吉林大学博士学位论文, 2014.

    Google Scholar

    [17] 赵院冬, 车继英, 许逢明, 等. 碎屑锆石U-Pb年龄谱系对兴安地块落马湖群原岩形成时代的约束[J]. 地球科学, 2020, 45(2): 489-502.

    Google Scholar

    [18] 张兴洲, 杨宝俊, 吴福元, 等. 中国兴蒙-吉黑地区岩石圈结构基本特征[J]. 中国地质, 2006, 33(4): 816-823. doi: 10.3969/j.issn.1000-3657.2006.04.011

    CrossRef Google Scholar

    [19] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [20] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [21] Ludwig K P. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California, 2003.

    Google Scholar

    [22] 吴元保, 郑永飞. 锆石成因矿物研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [23] Yang J H, Wu F Y, Shao J, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246: 336-352. doi: 10.1016/j.epsl.2006.04.029

    CrossRef Google Scholar

    [24] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

    Google Scholar

    [25] Irvine T H, Baragar W R A. A guide to the chemical classification of the commonvolcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [26] Winchester J A, Floyd P A. Geochemical magma type discrimination: Applicationto altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28: 459-469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [27] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise Geochem, 2003, (3): 1-64.

    Google Scholar

    [28] Condie K C. Plate tectonics and crustal evolution[M]. Pergamon Press, London, 1976: 1-288.

    Google Scholar

    [29] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[M]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    Google Scholar

    [30] 李昌年. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版社, 1992: 104-118.

    Google Scholar

    [31] Pearce J A. Trace element characteristics of lava from destructive plate boundaries[C]//Thorpe R S. Andesites: orogenic andesites and related rocks. New York: John Willey and Suns, 1982: 525-548.

    Google Scholar

    [32] 黑龙江省地质矿产局. 黑龙江省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.

    Google Scholar

    [33] 黄永卫, 刘扬, 王喜臣, 等. 黑龙江北部多宝山矿区奥陶系的岩石特征和构造意义[J]. 地质科学, 2009, 44(1): 245-256.

    Google Scholar

    [34] Miao L C, Zhang F Q, Zhu M S, et al. Zircon SHRIMP U-Pb dating of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an ranges, NE China: Timing of formation and metamorphism and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 114: 634-648. doi: 10.1016/j.jseaes.2014.09.035

    CrossRef Google Scholar

    [35] 钱程, 汪岩, 陆露, 等. 大兴安岭北段扎兰屯地区斜长角闪岩年代学、地球化学和Hf同位素特征及其构造意义[J]. 地球科学, 2019, 44(10): 3193-3208.

    Google Scholar

    [36] 邓晋福, 罗照华, 苏尚国. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004: 11-21.

    Google Scholar

    [37] 刘军, 周振华, 何哲峰, 等. 黑龙江省铜山铜矿床英云闪长岩锆石U-Pb年龄及地球化学特征[J]. 矿床地质, 2015, 34(2): 289-308.

    Google Scholar

    [38] 牛耀龄. 玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路[J]. 高校地质学报, 2005, 11(1): 9-46. doi: 10.3969/j.issn.1006-7493.2005.01.002

    CrossRef Google Scholar

    [39] Li Y, Xu W L, Wang F, et al. Triassic volcanism along the eastem margin of the Xing'an Massif, NE China: Constraints on the spatial-temporal extent of the Mongol-Okhotsk tectonic regime[J]. Gondwana Research, 2017, 48: 205-223. doi: 10.1016/j.gr.2017.05.002

    CrossRef Google Scholar

    [40] 刘希雯, 杨浩, 董玉, 等. 大兴安岭明水地区三叠纪花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 岩石矿物学杂志, 2015, 34(2): 143-158. doi: 10.3969/j.issn.1000-6524.2015.02.002

    CrossRef Google Scholar

    [41] 隋振民, 葛文春, 吴福元, 等. 大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2009, 39(5): 849-867.

    Google Scholar

    [42] Meschede M. A method of discriminating between different types of Mid-Ocean Ridge Basalt and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [43] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50: 11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [44] 孙书勤, 张成江, 赵松江. 大陆板内构造环境的微量元素判别[J]. 大地构造与成矿学, 2007, 31(1): 104-109. doi: 10.3969/j.issn.1001-1552.2007.01.012

    CrossRef Google Scholar

    [45] Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10: 101-108. doi: 10.2113/gselements.10.2.101

    CrossRef Google Scholar

    [46] Gill J B. Orogenic andesites and plate tectonics[M]. Berlin: Springer-Verlag, 1981-358.

    Google Scholar

    [47] Kepezhinskas P, McDermott F, Defant M J, et al. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arcpetrogenesis[J]. Geochemica et Cosmo Chimica, 1997, 61: 577-600. doi: 10.1016/S0016-7037(96)00349-3

    CrossRef Google Scholar

    [48] 李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582.

    Google Scholar

    [49] 高爽, 陈卫锋, 任全, 等. 内蒙古察右中旗地区万隆昌-大脑包花岗岩成因研究[J]. 高校地质学报, 2017, 23(1): 1-15.

    Google Scholar

    [50] 闫冬, 臧兴运, 马春生, 等. 吉林和龙地区勇新二长花岗岩的成因及形成构造环境探讨[J]. 世界地质, 2018, 37(3): 724-736.

    Google Scholar

    [51] 王文龙, 滕学建, 刘洋, 等. 内蒙古狼山地区中三叠世早期C型埃达克岩的发现及其构造意义[J]. 地球科学, 2019, 44(1): 220-233.

    Google Scholar

    [52] 张晓飞, 滕超, 周毅, 等. 内蒙古西乌旗地区晚二叠世-早中三叠世花岗岩年代学和地球化学特征及构造意义[J]. 地质学报, 2019, 93(8): 1903-1927.

    Google Scholar

    [53] 王金芳, 李英杰, 李红阳, 等. 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质通报, 2020, 39(1): 51-61.

    Google Scholar

    [54] Tang J, Xu W L, Wang F, et al. Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean[J]. Lithos, 2014, 184/187: 1-16. doi: 10.1016/j.lithos.2013.10.024

    CrossRef Google Scholar

    [55] Tang J, Xu W L, Wang F, et al. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China[J]. Gondwana Research, 2016, 31: 218-240. doi: 10.1016/j.gr.2014.12.010

    CrossRef Google Scholar

    [56] 黄始琪, 董树文, 胡健民, 等. 蒙古-鄂霍茨克构造带的形成与演化[J]. 地质学报, 2016, 90(9): 2192-2205.

    Google Scholar

    [57] 江思宏, 韩世炯, 陈郑辉, 等. 蒙古国铜矿床成矿规律[J]. 地质科技情报, 2019, 38(5): 1-19.

    Google Scholar

    [58] 江思宏, 聂凤军, 苏永江, 等. 蒙古国额尔登特特大型铜-钼矿床年代学与成因研究[J]. 地球学报, 2010, 31(3): 289-306

    Google Scholar

    [59] 佘宏全, 梁玉伟, 李进文, 等. 内蒙古莫尔道嘎地区早中生代岩浆作用及其地球动力学意义[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1831-1864.

    Google Scholar

    [60] 莫申国, 韩美莲, 李锦轶. 蒙古-鄂霍茨克造山带的组成及造山过程[J]. 山东科技大学学报(自然科学版), 2005, 24(3): 50-64.

    Google Scholar

    [61] 吴根耀. 中亚造山带南带晚古生代演化: 兼论中蒙交界区中-晚二叠世残留海盆的形成[J]. 古地理学报, 2014, 16(6): 907-919.

    Google Scholar

    [62] 黄始琪, 董树文, 张福勤, 等. 蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J]. 地球学报, 2014, 35(4): 415-424.

    Google Scholar

    [63] 和政军, 李锦轶, 莫申国, 等. 漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析[J]. 中国科学(D辑), 2003, 33(12): 1219-1226.

    Google Scholar

    [64] 刘晓佳, 赵立国, 田琚, 等. 漠河逆冲推覆构造活动时代的ESR年龄证据[J]. 地质力学学报, 2014, 20(4): 299-303.

    Google Scholar

    [65] 赵书跃, 郑全波, 韩彦东. 漠河逆冲推覆构造中段地质特征与构造演化[J]. 地质通报, 2016, 35(7): 1095-1105.

    Google Scholar

    [66] 赵院冬, 车继英, 吴大天, 等. 小兴安岭西北部早-中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1119-1137.

    Google Scholar

    [67] 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 55-66.

    Google Scholar

    黑龙江省地质调查研究院. 卧都河幅-黑河市幅1: 25万区域地质调查报告. 2009.

    Google Scholar

    黑龙江省地质矿产局. 三道卡-白石砬子幅1: 20万区域地质调查报告. 1986.

    Google Scholar

    黑龙江地质调查研究院. 新峰幅等四幅1: 5万区域地质调查报告. 2000.

    Google Scholar

    列. 依. 克拉斯内. 彭云彪. 黑龙江流域及邻区地质图说明书. 哈尔滨, 黑龙江省地质矿产局-俄罗斯科尔滨斯基全俄地质研究所, 1996: 31-34.

    Google Scholar

    Ministry of natural resources and ecology of the Russian federation federal agency on mineral resources. Geological map of Russia and adjoining water areas(1: 2 500 000). 2016.

    Google Scholar

    内蒙古地质调查院. 沙巴尔吐幅等六幅1: 5万区域地质调查报告. 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(1311) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint