2021 Vol. 40, No. 6
Article Contents

WU Nianwen, JIANG Tuo, XU Qiong, ZHAO Xiaoming, ZHAO Long, QIU Xiaofei. Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton[J]. Geological Bulletin of China, 2021, 40(6): 920-929.
Citation: WU Nianwen, JIANG Tuo, XU Qiong, ZHAO Xiaoming, ZHAO Long, QIU Xiaofei. Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton[J]. Geological Bulletin of China, 2021, 40(6): 920-929.

Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton

More Information
  • Neoproterozoic tectonic evolution of the northern Yangtze craton is of great significance to the Precambrian geological evolution of South China.Zircon samples collected from the newly recognized bimodal meta-volcanic rocks of the Yaolinghe Formation in the Suizhou area were dated by LA-ICP-MS U-Pb method.Most zircons in the matabasalts are inherited zircons, their ages are consistent with those of detrital zircons from the underlying Wudang Formation in the region.Geochronological results also indicate that the muscovite-phyllites (felsic rocks) were formed at 623±3 Ma, representing the sedimentary age of the Yaolinghe Formation, synchronous with the 650-600 Ma intrusive sills in the Suizao terrane.Combined with the new geochronological data recording rifting-related magmatic-sedimentary rocks during the Late Neoproterozoic in the northern margin of the Yangtze craton, it can be advocated that the breakup of the Rodinia supercontinent in the northern part of the Yangtze craton might have been a long-lasting process.An oblique diachronous rifting model is further hypothesized for the breakup process.

  • 加载中
  • [1] Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 108: 16-42.

    Google Scholar

    [2] Gaucher C, Sial A N, Halverson G P, et al. The Neoproterozoic and Cambrian: a time of upheavals, extremes and innovations[C]//Gaucher C, Sial A N, Halverson G P, et al. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwestern Gondwana, Developments in Precambrian Geology. Amsterdam, Elsevier, 2009, 16: 3-11.

    Google Scholar

    [3] Stern R J. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history[J]. Gondwana Research, 2015, 14: 33-50.

    Google Scholar

    [4] Chen J F, Foland K A, Xing F M, et al. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China[J]. Geology, 1991, 19: 815-818. doi: 10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2

    CrossRef Google Scholar

    [5] Li Z X, Kinny P D. Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30: 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    CrossRef Google Scholar

    [6] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151: 79-100. doi: 10.1016/j.precamres.2006.08.002

    CrossRef Google Scholar

    [7] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159: 117-131. doi: 10.1016/j.precamres.2007.06.005

    CrossRef Google Scholar

    [8] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39: 299-302. doi: 10.1130/G31701.1

    CrossRef Google Scholar

    [9] Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191: 101-119. doi: 10.1016/j.precamres.2011.09.011

    CrossRef Google Scholar

    [10] Qiu X F, Yang H M, Lu S S, et al. Geochronology and geochemistry of Grenville-aged(1063±16 Ma)metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton[J]. International Geology Review, 2015, 57: 76-96. doi: 10.1080/00206814.2014.991949

    CrossRef Google Scholar

    [11] Qiu X F, Zhao X M, Yang H M, et al. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution[J]. Geological Magazine, 2018, 155: 1263-1276. doi: 10.1017/S0016756817000048

    CrossRef Google Scholar

    [12] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21: 577-594. doi: 10.1016/j.gr.2011.07.010

    CrossRef Google Scholar

    [13] Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200: 26-37.

    Google Scholar

    [14] 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11: 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002

    CrossRef Google Scholar

    [15] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855.

    Google Scholar

    [16] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41: 213-237. doi: 10.1016/j.jseaes.2011.03.002

    CrossRef Google Scholar

    [17] Dong Y P, Safonova I, Wang T. Tectonic evolution of the Qinling orogen and adjacent orogenic belts[J]. Gondwana Research, 2016, 30: 1-5. doi: 10.1016/j.gr.2015.12.001

    CrossRef Google Scholar

    [18] Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 2000, 323: 183-196. doi: 10.1016/S0040-1951(00)00106-2

    CrossRef Google Scholar

    [19] Ling W L, Ren B F, Duan R C, et al. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 2008, 53: 2192-2199.

    Google Scholar

    [20] 薛怀民, 马芳, 宋永勤. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27: 1116-1130.

    Google Scholar

    [21] 薛怀民, 马芳. 桐柏山造山带南麓随州群变沉积岩中碎屑锆石的年代学及其地质意义[J]. 岩石学报, 2013, 29: 564-580.

    Google Scholar

    [22] Yang Y A, Wang X C, Li Q L, et al. Integrated in situ U-Pb age and Hf-O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ 18 O magmas in the South China Block[J]. Precambrian Research, 2016, 273: 151-164. doi: 10.1016/j.precamres.2015.12.008

    CrossRef Google Scholar

    [23] Liu H, Zhao J H, Cawood P A, et al. South China in Rodinia: Constrains from the Neoproterozoic Suixian volcano-sedimentary group of the South Qinling Belt[J]. Precambrian Research, 2018, 314: 170-193. doi: 10.1016/j.precamres.2018.05.018

    CrossRef Google Scholar

    [24] 洪吉安, 马斌, 黄琦. 湖北枣阳大阜山镁铁/超镁铁杂岩体与金红石矿床成因[J]. 地质科学, 2009, 44: 231-244.

    Google Scholar

    [25] Wang M X, Wang Y, Bo W. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of the~635 Ma mafic intrusions in the northern margin of the Yangtze Block: a link of metasomatized subcontinental lithospheric mantle and Ni-Cu-(PGE)sulfide mineralization[J]. Precambrian Research, 2017, 309: 325-342.

    Google Scholar

    [26] Zhao J H, Asimow P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc-and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 59: 1811-1844. doi: 10.1093/petrology/egy080

    CrossRef Google Scholar

    [27] Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016

    CrossRef Google Scholar

    [28] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    [29] Ludwig K R. ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel(Berkeley Geochronology Center, Berkeley, California)[M]. BGC Special Publication 1a, Berkeley, 2003: 55.

    Google Scholar

    [30] Hu J, Liu X C, Chen L Y, et al. A~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564-3579. doi: 10.1007/s11434-013-5904-1

    CrossRef Google Scholar

    [31] Nie H, Yao J, Wan X, et al. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks[J]. Precambrian Research, 2016, 286: 167-179. doi: 10.1016/j.precamres.2016.10.005

    CrossRef Google Scholar

    [32] 陆松年, 李怀坤, 王惠初, 等. 秦-祁-昆造山带元古宙副变质岩层碎屑错石年龄谱研究[J]. 岩石学报, 2009, 25: 2195-2208.

    Google Scholar

    [33] 卢山松, 江拓, 彭三国, 等. 武当地块与扬子陆核区新元古代早期沉积岩碎屑锆石U-Pb年代学对比及其地质意义[J]. 岩石矿物学杂志, 2017, 36: 646-654. doi: 10.3969/j.issn.1000-6524.2017.05.005

    CrossRef Google Scholar

    [34] Deng Q Wang J, Wang Z J, et al. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block-implications for the breakup of Rodinia[J]. International Geology Review, 2013, 55: 1865-1884. doi: 10.1080/00206814.2013.799257

    CrossRef Google Scholar

    [35] Xu Y, Yang K G, Polat A, et al. The~860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic[J]. Precambrian Research, 2016, 275: 310-331. doi: 10.1016/j.precamres.2016.01.021

    CrossRef Google Scholar

    [36] 朱江, 彭三国, 彭练红, 等. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义[J]. 地球科学, 2019, 44: 355-365.

    Google Scholar

    [37] Chaves A D O, Neves J M C. Magmatism, rifting and sedimentation related to Late Paleoproterozoic mantle plume events of Central and Southeastern Brazil[J]. Journal of Geodynamics, 2005, 39: 197-208. doi: 10.1016/j.jog.2004.10.003

    CrossRef Google Scholar

    [38] 祝禧艳, 陈福坤, 王伟, 等. 豫西地区秦岭造山带武当岩群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报, 2008, 29: 817-829. doi: 10.3321/j.issn:1006-3021.2008.06.025

    CrossRef Google Scholar

    [39] 李建华, 张岳桥, 徐先兵, 等. 北大巴山凤凰山岩体锆石U-Pb LA-ICP-MS年龄及其构造意义[J]. 地质论评, 2012, 58: 581-593. doi: 10.3969/j.issn.0371-5736.2012.03.019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1498) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint