2021 Vol. 40, No. 6
Article Contents

LI Zhipei, BAI Jianke, RU Yanjiao, LI Ting, LI Xiaoying. Age and petro-geochemistry of High-aluminum basalts from northern Zhaosu County of Xinjiang The sign to convergent margins of Early Carboniferous plate in West Tianshan[J]. Geological Bulletin of China, 2021, 40(6): 864-879.
Citation: LI Zhipei, BAI Jianke, RU Yanjiao, LI Ting, LI Xiaoying. Age and petro-geochemistry of High-aluminum basalts from northern Zhaosu County of Xinjiang The sign to convergent margins of Early Carboniferous plate in West Tianshan[J]. Geological Bulletin of China, 2021, 40(6): 864-879.

Age and petro-geochemistry of High-aluminum basalts from northern Zhaosu County of Xinjiang The sign to convergent margins of Early Carboniferous plate in West Tianshan

  • Basalts and sodic trachybasalts are the main rocks outcropped in the south of Wusunshan in western Tianshan Mountains.LA-ICP-MS analysis on the Early Carboniferous volcanic rocks of Dahalajunshan Group yields an U-Pb age of 355.1±4.0 Ma.These volcanic rocks are characterized by SiO2 45.04%~49.84%, Na2O 2.36%~4.63%, and K2O 0.35%~2.31%, high ratios of Na2O/K2O (2.00~8.69) and high contents of Al2O3 (16.01%~17.15%), suggesting that they are sodic and high alumina basalts with small amount of alkaline basalts.The total rare earth contents, (La/Yb)N and δEu of volcanic rocks range from 94.71×10-6to 127.2×10-6, from 2.41 to 4.07 and from 0.99 to 1.1 respectively.The REE patterns are characterized by enriched LREE and relatively depleted HREE, with weak positive Eu anomaly, which is in accordance with high sodic plagioclase contents in rocks.Enriched large-ion-lithophile elements (LILE), such as Ba and K, depleted high-field-strength elements (HFSE), such as Nb-Ta, Th-U and Ti, and the magmatic evolution trend suggest that these rocks belong to typical island arc tholeiitic series, which have experienced pyroxene and feldspar fractionation.The determination of high alumina basalts is the sign to convergent margin of early Carboniferous plate in West Tianshan.Therefore, it is considered that these basaltic rocks were formed at continental arc setting and could be in the second volcanic chain.And then, the basaltic magma might be formed by partial melting of enriched metasomatic mantle upon subduction zone.

  • 加载中
  • [1] Seng r A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoiccrustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [2] Jahn B M, Wu F Y, Chen B. Massive Granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23: 82-92. doi: 10.18814/epiiugs/2000/v23i2/001

    CrossRef Google Scholar

    [3] Jahn B M, Griffin W L, Wingley B F. Continental growth in the Phanerozoic: evidence from Central Asia[J]. Tectonophysics(special issue), 2020, 328: 1-227.

    Google Scholar

    [4] 肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992: 1-11, 90-103.

    Google Scholar

    [5] Gao J, Klemd R. Formation of HP LT rocks and theirtectonic implications in the western Tianshan Orogen. NW China: geochemical and age constraints[J]. Lithos, 2003, 66: 1-22. doi: 10.1016/S0024-4937(02)00153-6

    CrossRef Google Scholar

    [6] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304: 370-395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [7] Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102-117. doi: 10.1016/j.jseaes.2007.10.008

    CrossRef Google Scholar

    [8] 董云鹏, 张国伟, 周鼎武, 等. 中天山北缘冰达坂蛇绿混杂岩的厘定及其构造意义[J]. 中国科学(D辑), 2005, 35(6): 552-560.

    Google Scholar

    [9] 董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37-44.

    Google Scholar

    [10] 陈丹玲, 刘良, 车自成, 等. 中天山骆驼沟火山岩的地球化学特征及其构造环境[J]. 岩石学报, 2001, 17(3): 378-384

    Google Scholar

    [11] Heinhorst J, Lehmann B, Ermolov P, et al. Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan[J]. Tectonophysics, 2000, 328: 69-87. doi: 10.1016/S0040-1951(00)00178-5

    CrossRef Google Scholar

    [12] 张芳荣, 程春华, 余泉, 等. 西天山乌孙山一带大哈拉军山组火山岩LA-ICP-MS锆石U-Pb定年[J]. 新疆地质, 2009, 27(3): 231-235. doi: 10.3969/j.issn.1000-8845.2009.03.007

    CrossRef Google Scholar

    [13] Shen P, Shen Y C, Li X H, et al. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach[J]. Lithos, 2012, 140/141: 103-118.

    Google Scholar

    [14] Chen J F, Han B F, Jia J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115: 137-152. doi: 10.1016/j.lithos.2009.11.014

    CrossRef Google Scholar

    [15] Han B F, Wang S G, Jahn B M, et al. Depleted-mantle magma source for the Ulungur River A-type granites from north Xinjiang, China: Geochemisitry and Nd-Sr isotopic evidence, and implication for Phanerozoic crustal growth[J]. Chemical Geology, 1994, 138: 135-159.

    Google Scholar

    [16] Zhou T F, Yuan F, Fan Y, et al. Granites in the Saur region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008, 106: 191-206. doi: 10.1016/j.lithos.2008.06.014

    CrossRef Google Scholar

    [17] Dong Y P, Zhang G W, Neubauer F, et al. Syn-and post-collisional granitoids in the Central Tianshan orogen: geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research, 2011, 20: 568-581. doi: 10.1016/j.gr.2011.01.013

    CrossRef Google Scholar

    [18] Neubauer F, Liu X M, Hauzenberger C. Syn- and post-collisional granitoids in the Central Tianshan orogen: geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research, 2011, 20: 568-581. doi: 10.1016/j.gr.2011.01.013

    CrossRef Google Scholar

    [19] Tang G J, Wang Q, Wyman D A, et al. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting[J]. Lithos, 2010, 119: 393-411. doi: 10.1016/j.lithos.2010.07.010

    CrossRef Google Scholar

    [20] 车自成, 刘洪福, 刘良, 等. 中天山造山带的形成与演化[M]. 北京: 地质出版社, 1994: l-135.

    Google Scholar

    [21] 车自成, 刘良, 刘洪福, 等. 论伊犁裂谷[J]. 岩石学报, 1996, 12(3): 478-490. doi: 10.3321/j.issn:1000-0569.1996.03.014

    CrossRef Google Scholar

    [22] 夏林圻, 夏祖春, 徐学义, 等. 天山石炭纪大火成岩省与地幔柱[J]. 地质通报, 2004, 23(9/10): 903-910.

    Google Scholar

    [23] 夏林圻, 李向民, 夏祖春, 等. 天山石炭纪-二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 39(1): 1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001

    CrossRef Google Scholar

    [24] Xia L Q, Xu X Y, Xia Z C, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. Geological Society of America Bulletin, 2004, 116(3-4): 419-433.

    Google Scholar

    [25] 白建科, 李智佩, 徐学义, 等. 西天山乌孙山地区大哈拉军山组碎屑锆石U-Pb定年及其地质意义[J]. 中国地质, 2015, 42(1): 85-96.

    Google Scholar

    [26] 白建科, 李智佩, 徐学义, 等. 西天山早石炭世构造环境: 大哈拉军山组底部沉积地层学证据[J]. 沉积学报, 2015, 33(3): 459-470.

    Google Scholar

    [27] 高山林, 李云新. 西天山尼勒克水泥厂大哈拉军山组形成时代与构造背景[J]. 新疆地质, 2017, 33(4): 440-448.

    Google Scholar

    [28] 姜常义, 吴文奎, 张学仁, 等. 从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据[J]. 岩石矿物学杂志, 1995, 14(4): 289-300.

    Google Scholar

    [29] 朱永峰, 张立飞, 古丽冰, 等. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J]. 科学通报, 2005, 50: 2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014

    CrossRef Google Scholar

    [30] 王博, 舒良树, Cluzel D, 等. 新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义[J]. 中国地质, 2006, 33(3): 498-508. doi: 10.3969/j.issn.1000-3657.2006.03.006

    CrossRef Google Scholar

    [31] 安芳, 朱永峰. 西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究[J]. 岩石学报, 2008, 24(12): 2741-2748.

    Google Scholar

    [32] 龙灵利, 高俊, 钱青, 等. 西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J]. 岩石学报, 2008, 24(4): 699-710.

    Google Scholar

    [33] 李永军, 李注苍, 佟丽莉, 等. 论天山古洋盆关闭的地质时限——来自伊犁地块石炭系的新证据[J]. 岩石学报, 2010, 26(10): 2905-2912.

    Google Scholar

    [34] 李永军, 吴乐, 李书领, 等. 伊宁地块石炭纪火山岩及其对构造演化的约束[J]. 岩石学报, 2017, 33(1): 1-15.

    Google Scholar

    [35] 李继磊, 钱青, 高俊, 等. 西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入体的地球化学特征、时代和构造环境[J]. 岩石学报, 2010, 26(10): 2913-2924.

    Google Scholar

    [36] 茹艳娇, 徐学义, 李智佩, 等. 西天山乌孙山地区大哈拉军山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境[J]. 地质通报, 2012, 31(1): 50-62. doi: 10.3969/j.issn.1671-2552.2012.01.006

    CrossRef Google Scholar

    [37] 李大鹏, 杜杨松, 庞振山, 等. 西天山阿吾拉勒石炭纪火山岩年代学和地球化学研究[J]. 地球学报, 2013, 34(2): 176-192.

    Google Scholar

    [38] 李鸿. 西天山尼勒克一带大哈拉军山组火山岩地球化学特征及构造意义[J]. 新疆地质, 2017, 35(2)145-150. doi: 10.3969/j.issn.1000-8845.2017.02.006

    CrossRef Google Scholar

    [39] 周翔, 余心起, 王宗秀, 等. 西天山大哈拉军山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 2015, 34(5): 845-860. doi: 10.3969/j.issn.1671-2552.2015.05.005

    CrossRef Google Scholar

    [40] 钱青, 高俊, 熊贤明, 等. 西天山昭苏北部石炭纪火山岩的地球化学特征、成因及形成环境[J]. 岩石学报, 2006, 22(5): 1307-1323.

    Google Scholar

    [41] 李春昱, 王荃, 刘雪亚, 等. 亚洲大地构造图(1: 8 000 000)[M]. 北京: 地图出版社, 1982.

    Google Scholar

    [42] 李春昱, 王荃. 中国北部边陲及邻区的古板块构造与欧亚大陆的形成[C]//蔡文俊(主编). 中国北方板块构造文集, 第1集[M]. 北京: 地质出版社, 1983: 3-16.

    Google Scholar

    [43] 王洪亮, 徐学义, 何世平, 等. 天山及邻区地质图(1: 1 000 000)[M]. 北京: 地质出版社, 2007.

    Google Scholar

    [44] Kwon S T, Tilton G R, Coleman, R G, et al. Isotopic studies bearing on the tectonics of the west Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 719-727. doi: 10.1029/TC008i004p00719

    CrossRef Google Scholar

    [45] Xiao X C, Tang Y Q, Wang J, et al. Tectonic evolution of the Northern Xinjiang, N.W. China: an introduction to the tectonics of the southern part of the Paleo-Asian Ocean[C]//Coleman, R G. Reconstruction of the Paleo-Asian Ocean. Proceeding of the 29th International Geological Congress, Part B. VSP, Utrecht, 1994: 6-25.

    Google Scholar

    [46] 徐学义, 夏林圻, 马中平, 等. 天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 2006, 22(1): 83-94.

    Google Scholar

    [47] 徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J]. 地质学报, 2006, 50(8): 1168-1176. doi: 10.3321/j.issn:0001-5717.2006.08.010

    CrossRef Google Scholar

    [48] 李智佩, 吴亮, 颜玲丽. 中国西北地区蛇绿岩时空分布与构造演化[J]. 地质通报, 2020, 39(6): 783-817.

    Google Scholar

    [49] 汤耀庆, 高俊, 赵民. 西南天山蛇绿岩和蓝片岩[M]. 北京: 地质出版社, 1995.

    Google Scholar

    [50] 杨经绥, 徐向珍, 李天福, 等. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据[J]. 岩石学报, 2011, 27(1): 77-95.

    Google Scholar

    [51] 夏林圻, 张国伟, 夏祖春, 等. 天山古生代洋盆开启、闭合时限的岩石学约束——来自震旦纪、石炭纪火山岩的证据[J]. 地质通报, 2002, 21(2): 55-62. doi: 10.3969/j.issn.1671-2552.2002.02.002

    CrossRef Google Scholar

    [52] Gao J, Li M S, Xiao X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics, 1998, 287: 213-231. doi: 10.1016/S0040-1951(97)00211-4

    CrossRef Google Scholar

    [53] Gao J, Zhang L F, Liu S W. The 40Ar/39Ar age record of formation and uplift of the blueschists and eclogites in the western Tianshan Mountains[J]. Chinese Science Bulletin, 2000, 45: 1047-1051.

    Google Scholar

    [54] 姜常义, 穆艳梅, 白开寅, 等. 南天山花岗岩类的年代学、岩石学、地球化学及其构造环境[J]. 岩石学报, 1999, 15(2): 298-305.

    Google Scholar

    [55] 赵振华, 王强, 熊小林, 等. 新疆北部的两类埃达克岩[J]. 岩石学报, 2006, 22(5): 1249-1265.

    Google Scholar

    [56] 王作勋, 邹继易, 吕喜朝, 等. 天山多旋回构造演化及成矿[M]. 北京: 科学出版社, 1990: 129-133。

    Google Scholar

    [57] 高长林, 黄泽光, 叶德燎, 等. 中国早古生代三大古海洋及其对盆地的控制[J]. 石油实验地质, 2005, 27(5): 439-448. doi: 10.3969/j.issn.1001-6112.2005.05.003

    CrossRef Google Scholar

    [58] 李智佩, 白建科, 茹艳娇, 等. 西天山地区早石炭世火山岩形成时代、地层清理及其地质意义[C]//第四届全国地层会议论文摘要, 2013: 599.

    Google Scholar

    [59] 朱永峰, 周晶, 宋彪, 等. 新疆"大哈拉军山组"火山岩形成时代问题及其解题方案[J]. 中国地质, 2006, 33(3): 487-497. doi: 10.3969/j.issn.1000-3657.2006.03.005

    CrossRef Google Scholar

    [60] 翟伟, 孙晓明, 高俊, 等. 新疆阿希金矿床赋矿围岩-大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 2006, 22(5): 1399-1404.

    Google Scholar

    [61] 李永军, 李注苍, 周继兵, 等. 西天山阿吾拉勒一带石炭系岩石地层单位厘定[J]. 岩石学报, 2009, 25(6): 1332-1340.

    Google Scholar

    [62] 汪帮耀, 姜常义. 西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因[J]. 地质科技情报, 2011, 30(6): 18-27. doi: 10.3969/j.issn.1000-7849.2011.06.003

    CrossRef Google Scholar

    [63] 沈立军, 王怀洪, 李大鹏, 等. 新疆西天山智博铁矿床地球化学及同位素特征[J]. 地质通报, 2020, 39(5): 698-711.

    Google Scholar

    [64] Liu X, Gao S, Diwu C, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 mu m spot size[J]. Chinese Science Bulletin, 2007, 52: 1257-1264.

    Google Scholar

    [65] Winchester J A, Floyd P A. Geochemicaldiscrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [66] Irvine T N, Baragar W R A. A guide to the chemica classification of the common volcanic rocks[J]. Can. Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [67] Boynton W V. Cosmochemistry of the rare earth elements[C]//Henderson P. Rare earth element geochemistry, 1984: 63-114.

    Google Scholar

    [68] Sun S S, MCDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[M]. Geological Society of London, Special Publication, 1989, 42: 313-334.

    Google Scholar

    [69] Tilley C E. Some aspects of magmatic evolution[J]. Quarterly Journal of Geological Society, 1950, 106: 37-50. doi: 10.1144/GSL.JGS.1950.106.01-04.04

    CrossRef Google Scholar

    [70] Kuno H. High-alumina basalt[J]. Journal of Petrology, 1960, 1: 121-145. doi: 10.1093/petrology/1.2.121

    CrossRef Google Scholar

    [71] Ewart A E. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: With special reference to the andesitic-basaltic compositional range[C]//Thorpe R S. Andesites: Orogenic andesites and related rocks: New York, John Wiley & Sons, 1982: 25-95.

    Google Scholar

    [72] 王德滋, 周新民. 火山岩岩石学[M]. 北京: 科学出版社, 1982.

    Google Scholar

    [73] Perfit M R, Gust D A, Bence A E, et al. Chemical Characteristics of Island-Arc Basalts: Implications for Mantle Sources[J]. Chemical Geology, 1980, 30: 227-256. doi: 10.1016/0009-2541(80)90107-2

    CrossRef Google Scholar

    [74] Ozerov A Y. The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions[J]. Journal of Volcanology and Geothermal Research, 2000, 95: 65-79. doi: 10.1016/S0377-0273(99)00118-3

    CrossRef Google Scholar

    [75] Green T H, Green D H, Ringwood A E. The origin of high-alumina basalts and their relationships to quartz tholeiites and alkali basalts[J]. Earth and Planetary Science Letters, 1967, 2: 41-51. doi: 10.1016/0012-821X(67)90171-9

    CrossRef Google Scholar

    [76] Marsh B D, Carmichael I S E. Benioff zone magmatism[J]. Jounal of Geophysical Research, 1974, 79: 1196-1206. doi: 10.1029/JB079i008p01196

    CrossRef Google Scholar

    [77] Brophy J G, Marsh B D. On the origin of high-alumina arc basalt and the mechanics of melt extraction[J]. Journal of Petrology, 1986, 27: 763-789. doi: 10.1093/petrology/27.4.763

    CrossRef Google Scholar

    [78] Crawford A J, Falloon T J, Eggins S. The Origin of island arc high-alumina basalts[J]. Contributions to Mineralogy and Petrology, 1987, 97: 417-430. doi: 10.1007/BF00372004

    CrossRef Google Scholar

    [79] Kay S M, Kay, R W. Aleutian tholeiitic and calc-alkaline magma series 1: The mafic phenocrysts[J]. Contributions to Mineralogy and Petrology, 1985, 90: 276-290. doi: 10.1007/BF00378268

    CrossRef Google Scholar

    [80] Kadik A A, Rozenhauer M, Lukanin O A. Experimental study of pressure influence on the crystallization of Kamchatka magnesian and aluminous basalts[J]. Geochemistry, 1989, 12: 1748-1762.

    Google Scholar

    [81] Albarède F, Luais B, Futon G, et al. The Geochemical regimes of Piton de la Fournaise volcano (Reunion) during the last 530 000 years[J]. Journal of Petrology, 1997, 38(2): 171-201. doi: 10.1093/petroj/38.2.171

    CrossRef Google Scholar

    [82] Geist D, Naumann T, Larson P. Evolution of Galapagos magmas: mantle and crustal fractionation without assimilation[J]. Journal of Petrology, 1998, 39(5): 953-971. doi: 10.1093/petroj/39.5.953

    CrossRef Google Scholar

    [83] Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth and planetary Science Letters, 1973, 19: 218-224. doi: 10.1016/0012-821X(73)90118-0

    CrossRef Google Scholar

    [84] 新疆维吾尔自治区区域地层表编写组. 西北地区区域地层表[M]. 北京: 地质出版社, 1981: 177-208.

    Google Scholar

    [85] 朱永峰, 安芳, 薛云兴, 等. 西南天山特克斯科桑溶洞火山岩的锆石U-Pb年代学研究[J]. 岩石学报, 2010, 26(8): 2255-2263.

    Google Scholar

    [86] 李婷, 徐学义, 李智佩, 等. 西天山科克苏河大哈拉军山组火山岩形成年代和岩石地球化学特征[J]. 地质通报, 2012, 31(12): 1929-1938. doi: 10.3969/j.issn.1671-2552.2012.12.002

    CrossRef Google Scholar

    [87] 冯金星, 石品福, 汪帮耀, 等. 西天山阿吾拉勒成矿带火山岩型铁矿[M]. 北京: 地质出版社, 2010: 1-132.

    Google Scholar

    [88] 高山林, 李云新. 西天山尼勒克水泥厂大哈拉军山组形成时代与构造背景[J]. 新疆地质, 2017, 33(4): 440-448.

    Google Scholar

    [89] 韩琼, 弓小平, 马华东, 等. 西天山阿吾拉勒成矿带大哈拉军山组火山岩时空分布规律及其地质意义[J]. 中国地质, 2015, 42(3): 570-586. doi: 10.3969/j.issn.1000-3657.2015.03.013

    CrossRef Google Scholar

    [90] 孙林华, 彭头平, 王岳军. 新疆特克斯东南大哈拉军山组玄武安山岩地球化学特征: 岩石成因和构造背景探讨[J]. 大地构造与成矿学, 2007, 31(3): 372-379. doi: 10.3969/j.issn.1001-1552.2007.03.016

    CrossRef Google Scholar

    [91] 郭璇, 朱永峰. 新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究[J]. 高校地质学报, 2006, 12(1): 62-73. doi: 10.3969/j.issn.1006-7493.2006.01.007

    CrossRef Google Scholar

    [92] 茹艳娇, 李智佩, 白建科, 等. 西天山乌孙山地区大哈拉军山组火山岩岩石组合与喷发序列研究进展[J]. 西北地质, 2018, 51(4): 33-42. doi: 10.3969/j.issn.1009-6248.2018.04.005

    CrossRef Google Scholar

    [93] 李注苍, 李永军, 李景宏, 等. 西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析[J]. 新疆地质, 2006, 24(2): 120-124. doi: 10.3969/j.issn.1000-8845.2006.02.005

    CrossRef Google Scholar

    [94] 孙吉明, 马中平, 徐学义, 等. 西天山伊宁县北琼阿希河谷火山岩地球化学特征及构造背景探讨[J]. 岩石矿物学杂志, 2012, 31(3): 335-347. doi: 10.3969/j.issn.1000-6524.2012.03.004

    CrossRef Google Scholar

    [95] 从柏林. 岩石化学研究及其意义[C]//叶大年, 从柏林. 岩矿实验室工作方法手册. 北京: 地质出版社, 1981: 293-322.

    Google Scholar

    [96] Miyashiro. Classification, characteristics, and origin of ophiolites[J]. The Journal of Geology, 1975, 83(2): 249-281. doi: 10.1086/628085

    CrossRef Google Scholar

    [97] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [98] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]//Hawkesworth C J, Norry M J. Nantwich, Continental Basalts and Mantle Xenoliths. UK: Shiva, 1983: 230-249.

    Google Scholar

    [99] 王润三, 王居里, 周鼎武, 等. 南天山榆树沟遭受麻粒岩相变质改造的蛇绿岩套研究[J]. 地质科学, 1999, 34(2): 166-176.

    Google Scholar

    [100] 郝杰, 刘小汉. 南天山蛇绿混杂岩形成时代及大地构造意义[J]. 地质科学, 1993, 28(1): 93-95.

    Google Scholar

    [101] 龙灵利, 高俊, 熊贤明, 等. 南天山库勒湖蛇绿岩地球化学特征及其年龄[J]. 岩石学报, 2006, 22(1): 65-73.

    Google Scholar

    [102] 马中平, 夏林圻, 徐学义, 等. 南天山库勒湖蛇绿岩形成环境及构造意义基性熔岩的地球化学证据[J]. 岩石矿物学杂志, 2006, 25(5): 387-400. doi: 10.3969/j.issn.1000-6524.2006.05.003

    CrossRef Google Scholar

    [103] 何国琦, 李茂松. 中亚蛇绿岩带研究进展及区域构造连接[J]. 新疆地质, 2000, 18(3): 193-202. doi: 10.3969/j.issn.1000-8845.2000.03.001

    CrossRef Google Scholar

    [104] 舒良树, 王博, 朱文斌. 南天山蛇绿混杂岩中放射虫化石的时代及其构造意义[J]. 地质学报, 2007, 81(9): 1161-1168. doi: 10.3321/j.issn:0001-5717.2007.09.001

    CrossRef Google Scholar

    [105] Klemd R, Br cker M, Hacker B R, et al. New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China[J]. The Journal of Geology, 2005, 113: 157-168. doi: 10.1086/427666

    CrossRef Google Scholar

    [106] Kr ner A, Alexeiev D V, Hegner E, et al. Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan[J]. Gondwana Research, 2012, 21(4): 901-927. doi: 10.1016/j.gr.2011.05.010

    CrossRef Google Scholar

    [107] Lomize M G, Demina L I, Zarshchikov A A. The Kyrgyz-Terskei Paleoceanic Basin, Tien Shan[J]. Geotectonics, 1997, 31: 463-482.

    Google Scholar

    [108] 何国琦, 李茂松, 韩宝福. 中国西南天山及邻区大地构造研究[J]. 新疆地质, 2001, 19(1): 7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002

    CrossRef Google Scholar

    [109] Bazhenov M L, Collins A Q, Degtyarev K E, et al. Paleozoic northward drift of the North Tien Shan(Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism[J]. Tectonophysics, 2003, 366: 113-141. doi: 10.1016/S0040-1951(03)00075-1

    CrossRef Google Scholar

    [110] Qian Q, Gao J, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 2009, 98: 551-569. doi: 10.1007/s00531-007-0268-x

    CrossRef Google Scholar

    [111] 李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征: 地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 895-909. doi: 10.3969/j.issn.1671-2552.2006.08.001

    CrossRef Google Scholar

    [112] Mao J W, Konondelko D, Seltamn R, et al. Postcollisional age of the Kumtor Gold deposit and timing of Hercynian events in the Tien Shan[J]. Economic Geology, 2004, 99: 1771-1780. doi: 10.2113/gsecongeo.99.8.1771

    CrossRef Google Scholar

    [113] 徐学义, 王洪亮, 马国林, 等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 29(6): 691-706. doi: 10.3969/j.issn.1000-6524.2010.06.007

    CrossRef Google Scholar

    [114] Gao J, Long L, Klemd R, et al. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. International[J]. Journal of Earth Sciences, 2009, 98: 1221-1238. doi: 10.1007/s00531-008-0370-8

    CrossRef Google Scholar

    [115] 董云鹏, 周鼎武, 张国伟, 等. 中天山北缘干沟蛇绿混杂岩带的地质地球化学[J]. 岩石学报, 2006, 22(1): 49-56.

    Google Scholar

    [116] 李超, 肖文交, 韩春明, 等. 新疆北天山奎屯河蛇绿岩斜长花岗岩锆石SIMS U-Pb年龄及其构造意义[J]. 地质科学, 2013, 43(3): 815-826.

    Google Scholar

    [117] 苏会平, 司国辉, 张超. 新疆北天山巴音沟南侧发育早泥盆纪蛇绿岩及其构造意义[J]. 陕西地质, 2014, 32(1): 33-38. doi: 10.3969/j.issn.1001-6996.2014.01.007

    CrossRef Google Scholar

    [118] Wheller G E, Varne R, Foden J D, et al. Geochemistry of Quaternary volcanism in the sunda-banda arc, Indonesia, and three-comonent genesis of island-arc basalt magmas[J]. Journal of Volcaology and Geothermal Research, 1987, 32: 137-160. doi: 10.1016/0377-0273(87)90041-2

    CrossRef Google Scholar

    [119] Gertisser R, Keller J. Trace element and Sr, Nd, Pb and O isotope variations in medium-k and high-k volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis[J]. Journal of Petrology, 2003, 44(3): 457-489. doi: 10.1093/petrology/44.3.457

    CrossRef Google Scholar

    [120] Patricia Sruoga, Eduardo J, Llambias et al. Volcanological and geochemical evolution of the Diamante Caldera-Maipo volcano complex in the southern Andes of Argentina(34°10'S)[J]. Journal of South American Earth Sciences, 2005, 19: 399-414 doi: 10.1016/j.jsames.2005.06.003

    CrossRef Google Scholar

    [121] Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism. Subduction Top to Bottom[J]. Geophysical Monograph series, DC, 1996(96): 251-262.

    Google Scholar

    [122] Tatsumi Y, Eggins S. Subduction zone magmatism[M]. Blackwel Science, 1995: 1-211.

    Google Scholar

    [123] Pearce J A. Tectonic implications of thecomposition of volcanic arc magmas[J]. Annual Review of Earth Planet Sciences, 1995, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343

    CrossRef Google Scholar

    新疆区域地质调查大队. 昭苏幅1/20万区域地质调查报告. 1978.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(630) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint