2021 Vol. 40, No. 7
Article Contents

WANG Xiaofeng, XIONG Bo, QI Ronghui, LIU Junping, GUAN Xueqing, WU Jialin. Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent[J]. Geological Bulletin of China, 2021, 40(7): 1084-1093.
Citation: WANG Xiaofeng, XIONG Bo, QI Ronghui, LIU Junping, GUAN Xueqing, WU Jialin. Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent[J]. Geological Bulletin of China, 2021, 40(7): 1084-1093.

Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent

More Information
  • The latest Nd-Sr-Pb isotopes study of Emeishan basalt in the Zhaotong area of northeastern Yunnan Province shows that the basalt samples generally have a 1000~900 Ma Nd model age of depleted mantle. The source could be generated by mixing of different proportions of a recycled ancient oceanic crust component(EM1-like, 60%~90%) and a peridotite component from the lower mantle(FOZO-like component, 10%~40%). The sample satisfies the Dupal anomaly boundary condition, suggesting that the latitude of Emeishan basalt magma formation and emplacement is quite different from the current latitude, and there may exist a large space distance between them. Therefore, a new model for the formation of the Emeishan mantle plume is proposed. During 1000~900 Ma, the oceanic crust derived from the Rodinia supercontinent event subducted and subsided, and the remnants of the oceanic crust piled on the 660 km mantle transition zone to form relatively cold refractory megaliths. In the Late Permian(~260 Ma), these megaliths(probably eclogite facies super-compressive metamorphic rocks) further subsided down to the "D" layer of the core-mantle transition, and resulted in the transformation from perovskite to post-perovskite, which was a strong exothermic reaction resulting in partial melting of lower mantle and subducting plate accumulations themselves, leading to upwelling of high temperature iron and titanium to form the mantle plume. The large scale upwelling and eruption of these magmas formed the large-scale Emeishan Igneous Province(LIPs) in the west of Yangtze block. At this time, the paleogeographic location was still in a certain position in the southern hemisphere. After the closure of the Paleotethys, these basalts bearing the unique geochemical imprint of the southern hemisphere(Dupal anomaly) drifted northward along with the Yangtze plate and reached the present position.

  • 加载中
  • [1] Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0

    CrossRef Google Scholar

    [2] White R S, Mckenzie D P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Geophys. Res., 1989, 94: 7685-7729.

    Google Scholar

    [3] Hill R I. Starting pIume and continentaI break-up[J]. Earth Planet. Sci. Lett., 1991, 104: 398-416. doi: 10.1016/0012-821X(91)90218-7

    CrossRef Google Scholar

    [4] Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23(10): 889-892. doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2

    CrossRef Google Scholar

    [5] Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup[J]. Earth and Planetary Science Letters, 1999, 166(3): 177-195.

    Google Scholar

    [6] 张招崇. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 2009, 36(3): 634-646. doi: 10.3969/j.issn.1000-3657.2009.03.010

    CrossRef Google Scholar

    [7] Wignall P B. Large Igneous Provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33.

    Google Scholar

    [8] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.

    Google Scholar

    [9] 侯增谦, 卢记仁, 林盛中. 峨眉山地幔柱轴部的榴辉岩-地幔岩源区: 主元素、恒量元素及Sr、Nd、Pb同位素证据[J]. 岩石学报, 2005, 79(2): 200-219.

    Google Scholar

    [10] 张招崇, John J Mahoney, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部分熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552

    Google Scholar

    [11] 夏林圻, 徐学义, 李向民, 等. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质, 2012, 45(2): 1-26. doi: 10.3969/j.issn.1009-6248.2012.02.001

    CrossRef Google Scholar

    [12] 李宏博, 张招崇, 李永生, 等. 峨眉山地幔柱轴部位置的讨论[J]. 地质评论, 2013, 59(2): 201-208.

    Google Scholar

    [13] 姜寒冰. 峨眉山高钛和低钛玄武岩的岩石成因[D]. 长安大学硕士学位论文, 2006.

    Google Scholar

    [14] 朱炳泉. 全球幔源岩Pb-Sr-Nd同位素体系[J]. 地学前缘, 2007, 14(2): 24-36. doi: 10.3321/j.issn:1005-2321.2007.02.003

    CrossRef Google Scholar

    [15] 周德进, 沈丽璞, 张旗, 等. 滇西古特提斯构造带玄武岩的Dupar异常[J]. 地球物理学进展, 1995, 10(2): 39-44.

    Google Scholar

    [16] 刘成英. 峨眉山玄武岩的古地磁研究[D]. 中国科学院大学博士学位论文, 2012.

    Google Scholar

    [17] Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth and Planetary Science Letters, 2002, 198(3): 449-458.

    Google Scholar

    [18] 赖旭龙, 孙亚东, 江海水. 峨眉山大火成岩省火山活动与中晚二叠世之交生物大灭绝[J]. 中国科学基金, 2009, (6): 353-356. doi: 10.3969/j.issn.1000-8217.2009.06.007

    CrossRef Google Scholar

    [19] 朱江, 张招崇, 侯通, 等. 贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄: 对峨眉山大火成岩省与生物大规模灭绝关系的约束[J]. 岩石学报, 2011, 27(9): 2743-2751.

    Google Scholar

    [20] 朱江, 张招崇. 大火成岩省与二叠纪两次生物灭绝关系研究进展[J]. 地质论评, 2013, 59(1): 137-148. doi: 10.3969/j.issn.0371-5736.2013.01.015

    CrossRef Google Scholar

    [21] Ali J R, Thompson G M, Zhou M F, et al. Emeishan Large Igneous Province, SW China[J]. Lithos, 2005, 79(3/4): 475-489.

    Google Scholar

    [22] Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan Large Igneous Province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113(3/4): 369-392.

    Google Scholar

    [23] Ren Z Y, Wu Y D, Le Zhang, et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochimica et Cosmochimica Acta, 2017, 208: 63-85. doi: 10.1016/j.gca.2017.01.054

    CrossRef Google Scholar

    [24] Ernst R E, Buchan K L, Campbell Ian H. Frontiers in Large Igneous Province research[J]. Lithos, 2005, 79(3/4): 271-297.

    Google Scholar

    [25] Bryan S E, Ernst R E. Revised definition of Large Igneous Province research (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/4): 175-201.

    Google Scholar

    [26] Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Bingchuan section: Implications for the termination age of Emeishan Large Igneous Province[J]. Lithos, 2014, 204(3): 14-19.

    Google Scholar

    [27] 徐义刚, 钟孙霖. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地质化学, 2001, 30(1): 1-9.

    Google Scholar

    [28] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4): 341-353. doi: 10.3321/j.issn:1005-2321.2002.04.014

    CrossRef Google Scholar

    [29] Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contrib Mineral Petrol., 2006, 151: 1-19. doi: 10.1007/s00410-005-0030-y

    CrossRef Google Scholar

    [30] Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantel[J]. Nature, 1984, 309: 753-757 doi: 10.1038/309753a0

    CrossRef Google Scholar

    [31] 邢光福. Dupal同位素异常的概念、成因及其地质意义[J]. 火山地质与矿产, 1997, 18(4): 281-291.

    Google Scholar

    [32] Dupre B, Allegre C J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomema[J]. Nature, 1983, 303: 142-149. doi: 10.1038/303142a0

    CrossRef Google Scholar

    [33] Xu Y, Chung S, Jahn B, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southern China[J]. Lithos, 2001, 58: 145-168. doi: 10.1016/S0024-4937(01)00055-X

    CrossRef Google Scholar

    [34] 张招崇, 王福生. 峨眉山玄武岩Sr-Nd-Pb同位素特征及其物源[J]. 地球科学, 2003, 28(4): 431-439. doi: 10.3321/j.issn:1000-2383.2003.04.012

    CrossRef Google Scholar

    [35] Peng Z, Mahoney J J. Drilling lavas from the northwestern Deccan traps, and the evolution of Reunion hotspot mantle[J]. Earth Planet. Sci. Lett., 1995, 134: 169-185. doi: 10.1016/0012-821X(95)00110-X

    CrossRef Google Scholar

    [36] Sharma M A, Basu R, Nesternko G V. Temporal Sr-Nd-and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics[J]. Earth Planet. Sci. Lett., 1992, 113: 365-381. doi: 10.1016/0012-821X(92)90139-M

    CrossRef Google Scholar

    [37] De Paolo D J. Inferences about magma sources and mantle structures using variations of 143Nd/144Nd[J]. Geophys Res Lett.. 1976, 3: 743-746. doi: 10.1029/GL003i012p00743

    CrossRef Google Scholar

    [38] Mc Culloch M T, Wasserbug G J. Sm-Nd and Rb-Sr chronslogy of continental crust formation[J]. Science, 1978, 200: 1003-1011. doi: 10.1126/science.200.4345.1003

    CrossRef Google Scholar

    [39] 沈渭洲, 朱金初. 从Nd模式年龄谈华南地壳的形成时间[J]. 南京大学学报(地球科学版), 1990, 3: 82-92.

    Google Scholar

    [40] 李献华, 赵振华. 华南前寒武纪地壳形成的Sm-Nd和U-Pb同位素制约[J]. 地球化学, 1991, 6: 353-356.

    Google Scholar

    [41] 宋谢炎, 侯增谦, 汪云亮, 等. 峨眉山玄武岩的地幔热柱成因[J]. 矿物岩石, 2002, 22(4): 27-32. doi: 10.3969/j.issn.1001-6872.2002.04.006

    CrossRef Google Scholar

    [42] Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous comlex: Implications of the genesis of Fe-Ti oxide deposits and A-type granites of SW China[J]. Earth Planet. Sci. Lett., 2010, 289(3): 509-519.

    Google Scholar

    [43] Kamenetsky V S, Chuan S L, Kamentsky M B, et al. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources[J]. Journal of Petrology, 2012, 53(10): 2095-2113. doi: 10.1093/petrology/egs045

    CrossRef Google Scholar

    [44] Lassiter J C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotope constraints[C]//M ahoney J. Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, 1997: 335-355.

    Google Scholar

    [45] Mahoney J J. An isotopic survey of Pacific oceanic plateaus: Implications for their nature and origin[C]//Keating B H, Fryer P, Batiza R, et al. American Geophysical Union Monograph 43, Washington, DC, 1987: 207-220.

    Google Scholar

    [46] Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and age of the Ontong Java Plateau[C]//Pringle M S, Sager W W, Sliter W V, et al. Geophysical Monograph. American Geophysical Union, Washington, 1993, 77: 233-261.

    Google Scholar

    [47] Tejada M L G, Mahoney J J, Castillo P R, et al. Pin-pricking the elephant: Evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts[C]//Fitton J G, Mahoney J J, Wallace P J, et al. Origin and Evolution of the Ontong Java Plateau. Geological Society Special Publication, Geological Society of London, 2004, 229: 133-150.

    Google Scholar

    [48] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth Planet. Sci. Lett., 1991, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6

    CrossRef Google Scholar

    [49] Hauri E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382: 415-419. doi: 10.1038/382415a0

    CrossRef Google Scholar

    [50] Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229. doi: 10.1038/385219a0

    CrossRef Google Scholar

    [51] Lassiter J C, Hauri E H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume[J]. Earth Planet. Sci. Lett., 1998, 164: 483-496. doi: 10.1016/S0012-821X(98)00240-4

    CrossRef Google Scholar

    [52] Hart S R, Hauri E H, Oschmann L A. Mantle plumes and entrainment: isotope evidence[J]. Science, 1992, 256: 517-520. doi: 10.1126/science.256.5056.517

    CrossRef Google Scholar

    [53] Lee C T, Luffi P, Hoink T, et al. Upside-down differentiation and generation of a 'primordial' lower mantle[J]. Nature, 2010, 463: 930-935. doi: 10.1038/nature08824

    CrossRef Google Scholar

    [54] Hanan B B, Graham D W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes[J]. Science, 1996, 272: 991-995. doi: 10.1126/science.272.5264.991

    CrossRef Google Scholar

    [55] Farley K A, Natland J H, Craig H. Binary mixing of enriched and undegassed (primitive) mantle components (He, Sr, Nd, Pb) in Samoan lavas[J]. Earth Planet. Sci. Lett., 1992, 111: 183-199.

    Google Scholar

    [56] 杨晓松, 胡家杰. 二元混合体系的端元Sm-Nd模式年龄计算方法[J]. 地质科学, 1993, 28(1): 37-43.

    Google Scholar

    [57] 刘兵, 李小军, 关奇, 等. 滇东南富宁地区基性侵入岩及喷出岩时代[J]. 地质通报, 2018, 37(11): 2021-2031.

    Google Scholar

    [58] Ringwood A E. Phase transformations and differentiation in subducted lithosphere; implications for mantle dynanmics, basalt petrogenesis and crustal evolusion[J]. Journal of Geology, 1982, 314: 611-643.

    Google Scholar

    [59] Zhao G C, Sun M. A palo-mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Review, 2004, 67: 91-123.

    Google Scholar

    [60] Maruyama S, Santosh M. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-73.

    Google Scholar

    [61] 夏林圻. 超大陆构造、地幔动力学和岩浆-成矿相应[J]. 西北地质, 2013, 46(3): 1-45.

    Google Scholar

    [62] Santosh M A. Synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment[J]. Journal of Geodynamics, 2010, 50: 11-133.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(1007) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint