2021 Vol. 40, No. 7
Article Contents

LI Yuanbai, LI Haiquan, ZHOU Wenxiao, WANG Bo, CHANG Feng, LI Shucai, YANG Xinjie. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 40(7): 1117-1139.
Citation: LI Yuanbai, LI Haiquan, ZHOU Wenxiao, WANG Bo, CHANG Feng, LI Shucai, YANG Xinjie. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 40(7): 1117-1139.

Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province

More Information
  • As an important tectonic terrane in the southern margin of Central Asian Orogenic Belt(CAOB), the Beishan orogenic belt has undergone the accretion and stitching process of long-time and multi-stage, where Precambrian basements were universally distributed and Paleozoic crust was remarkably accreted. Therefore, based on the previous works, it is necessary to reconstruct the tectonic evolution of this belt in Neoproterozoic, research the ascription of basements, and discuss its role in the evolution of Paleo-Asian Ocean and even larger-scaled tectonic evolution. Two set of samples were collected from porphyritic biotite monzogranite and rhyolite in Daoban copper-Honggoushan-Dawan iron mine in the southern Beishan belt, Gansu Province, which were used for the study of petrography, geochemistry and zircon U-Pb geochronology. The samples are characterized by high silicon, rich alkali and potassium, peraluminous, low magnesium and calcium. The rare earth elements(REE) are characterized by differentiation of light and heavy rare earth elements and the negative anomaly of Eu. Trace elements manifest depletion of high field strength elements(HFSE) such as Nb and Ta, and enrichment of large ion lithophile elements(LILE) such as Sr and Ba. U-Pb dating of porphyritic biotite monzogranite yields the weighted average age of 892.3±5.1 Ma, and that of rhyolite yields 870.4±4.5 Ma, which shows similar geochronology. Typically featuring S-type granite, the porphyritic biotite monzogranite was formed in collision environment, and its magmatic source was generated from recycling of ancient crustal sediments. Characterized by A2-type granite, the rhyolite was formed in post-collisional extensional environment, and its magma was originated from partial melting of deep crustal material. The formation of two types of intrusives indicates that Beishan orogenic belt experienced a tectonic transformation from collision to extension. The collision before 890 Ma indicates its response to Rodinia supercontinental converging. The extensional event at 870 Ma reflects the beginning of Paleo-Asian Ocean in Beishan orogenic belt, which may be related to the breakup of the Rodinia supercontinent.

  • 加载中
  • [1] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [2] Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2011, 310(10): 1553-1594.

    Google Scholar

    [3] Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology[J]. Gondwana Research, 2016, 30: 224-235. doi: 10.1016/j.gr.2015.03.004

    CrossRef Google Scholar

    [4] Song D F, Xiao W J, Windley B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015, 224: 195-213.

    Google Scholar

    [5] 杨合群, 李英, 杨建国, 等. 北山造山带的基本成矿特征[J]. 西北地质, 2006, 2: 78-95. doi: 10.3969/j.issn.1009-6248.2006.02.005

    CrossRef Google Scholar

    [6] Sengör A M C, Natalin B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [7] Jahn B M, Windley B, Natal'in B, et al. Phanerozoic continental growth in central Asia-Preface[J]. Journal of Asian Earth Sciences, 2004, 23(5): 599-603. doi: 10.1016/S1367-9120(03)00124-X

    CrossRef Google Scholar

    [8] 许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22.

    Google Scholar

    [9] 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(8): 2201-2210.

    Google Scholar

    [10] Wan B, Li S H, Xiao W J, et al. Where and when did the Paleo-Asian ocean form?[J]. Precambrian Research, 2018, 317: 241-252. doi: 10.1016/j.precamres.2018.09.003

    CrossRef Google Scholar

    [11] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [12] Xia L Q. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195-212. doi: 10.1016/j.earscirev.2014.09.006

    CrossRef Google Scholar

    [13] Liu Q, Zhao G C, Han Y G, et al. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 2017, 274: 19-30.

    Google Scholar

    [14] 陈方宇, 王波, 李海泉, 等. 内蒙古锡林浩特博仁敖包-巴彦门德过铝质岩的锆石U-Pb年代学、地球化学及其构造意义[J]. 矿产勘查, 2019, 10(4): 768-780. doi: 10.3969/j.issn.1674-7801.2019.04.008

    CrossRef Google Scholar

    [15] Dobretsov N L, Buslov M M, Vernikovsky V A. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: Implications to the break-up of Rodinia[J]. Gondwana Research, 2003, 6(2): 143-159. doi: 10.1016/S1342-937X(05)70966-7

    CrossRef Google Scholar

    [16] 陆松年, 李怀坤, 陈志宏, 等. 新元古时期中国古大陆与罗迪尼亚超大陆的关系[J]. 地学前缘, 2004, 11(2): 515-523. doi: 10.3321/j.issn:1005-2321.2004.02.021

    CrossRef Google Scholar

    [17] 李献华, 李武显, 何斌. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验[J]. 矿物岩石地球化学通报, 2012, 31(6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002

    CrossRef Google Scholar

    [18] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222: 13-54.

    Google Scholar

    [19] 张克信, 徐亚东, 何卫红, 等. 中国新元古代青白口纪早期(1000~820Ma)洋陆分布[J]. 地球科学, 2018, 43(11): 3837-3852.

    Google Scholar

    [20] Liu H C, Zi J W, Cawood P A, et al. Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents[J]. Precambrian Research, 2020, 337: 105558. Doi:10.1016/j.precamres.2019.105558.

    CrossRef Google Scholar

    [21] 徐夕生, 王孝磊, 赵凯, 等. 新时期花岗岩研究的进展和趋势[J]. 矿物岩石地球化学通报, 2020, 39(5): 899-911.

    Google Scholar

    [22] 左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990, 10(4): 305-314.

    Google Scholar

    [23] Zong K Q, Chen J Y, Hu Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China-Earth Sciences, 2015, 58(10): 1731-1740. doi: 10.1007/s11430-015-5154-y

    CrossRef Google Scholar

    [24] Wang B R, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Precambrian Research, 2021, 352(1): 106016. Doi:10.1016/j.precamres.2020.106016

    CrossRef Google Scholar

    [25] Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-384. doi: 10.1017/S0016756800058222

    CrossRef Google Scholar

    [26] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [27] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [28] Gerdes A, Worner G, Henk A. Post-collisional granite generation and HAT Lp metamorphism by radiogenic heating: the example from the Var·iscan South Bohemian Batholith[J]. Journal of the GeologicaI Society London, 2000, 157: 577-587. doi: 10.1144/jgs.157.3.577

    CrossRef Google Scholar

    [29] 张旗, 王焰, 潘国强, 等. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报, 2008, 24(6): 51-62.

    Google Scholar

    [30] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1

    CrossRef Google Scholar

    [31] Huppert H E, Sparks R S J. The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust[J]. Journal of Petrology, 1988, 29(3): 599-624. doi: 10.1093/petrology/29.3.599

    CrossRef Google Scholar

    [32] Bergantz G W. Underplating and Partial Melting: Implications for Melt Generation and Extraction[J]. Science, 1989, 245(4922): 1093-1095. doi: 10.1126/science.245.4922.1093

    CrossRef Google Scholar

    [33] Takagi T, Orihashi Y, Naito K, et al. Petrology of a mantle-derived rhyolite, Hokkaido, Japan[J]. Chemical Geology, 1999, 160(4): 425-445. doi: 10.1016/S0009-2541(99)00111-4

    CrossRef Google Scholar

    [34] 韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 2007, 14(3): 64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006

    CrossRef Google Scholar

    [35] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [36] Hofmann A W. Chemical Differentation of the Earth-the Relationship Between Mantle, Continental Crust, and Ocean Crust[J]. Earth And Planetary Science Letters, 1988, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    [37] Chappell B W, White A J R. I-Type and S-Type Granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 1992, 83: 1-26.

    Google Scholar

    [38] Chappell B W, White A J R. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8: 173-174.

    Google Scholar

    [39] Loiselle M C, Wones D R. Characteristics of Anorogenic Granites. Geological Society of America[J]. Abstracts with Programs, 1979, 11: 468.

    Google Scholar

    [40] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.

    Google Scholar

    [41] 姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949-3967.

    Google Scholar

    [42] 牛文超, 任邦方, 任云伟, 等. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据[J]. 地球科学, 2019, 44(1): 284-297.

    Google Scholar

    [43] Zong K, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

    [44] Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research, 2015, 266: 409-424. doi: 10.1016/j.precamres.2015.05.034

    CrossRef Google Scholar

    [45] Liu Q, Zhao G C, Sun M, et al. Ages and tectonic implications of Neoproterozoic ortho-and paragneisses in the Beishan Orogenic Belt, China[J]. Precambrian Research, 2015, 266: 551-578. doi: 10.1016/j.precamres.2015.05.022

    CrossRef Google Scholar

    [46] He Z Y, Klemd R, Yan L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1-14. doi: 10.1016/j.earscirev.2018.05.012

    CrossRef Google Scholar

    [47] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [48] 张旗, 金惟俊, 李承东, 等. 再论花岗岩按照Sr-Yb的分类: 标志[J]. 岩石学报, 2010, 26(4): 985-1015.

    Google Scholar

    [49] Rollinson H R. Using geochemical data, evaluation, presentation, interpretation[M]. Longman Scientific and Technical, England, 1993.

    Google Scholar

    [50] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [51] Altherr R, Siebel W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions To Mineralogy And Petrology, 2002, 143(4): 397-415. doi: 10.1007/s00410-002-0352-y

    CrossRef Google Scholar

    [52] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29-44.

    Google Scholar

    [53] Douce A E P. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geology Society, 1999, 168(1): 55-77. doi: 10.1144/GSL.SP.1999.168.01.05

    CrossRef Google Scholar

    [54] 张旗, 金惟俊, 李承东, 等. 三论花岗岩按照Sr-Yb的分类: 应用[J]. 岩石学报, 2010, 26(12): 3431-3455.

    Google Scholar

    [55] 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269.

    Google Scholar

    [56] King E M, Valley J W, Davis D W, et al. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source[J]. Precambrian Research, 1998, 92(4): 365-387. doi: 10.1016/S0301-9268(98)00082-5

    CrossRef Google Scholar

    [57] Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841-844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    [58] Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134.

    Google Scholar

    [59] Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [60] Kerr A, Fryer B J. Nd isotope evidence for crust mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 1993, 104(1/4): 39-60.

    Google Scholar

    [61] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106.

    Google Scholar

    [62] Douce A E P. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    [63] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [64] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    [65] Rivers T. Lithotectonic elements of the Grenville Province: review and tectonic implications[J]. Precambrian Research, 1997, 86(3/4): 117-154.

    Google Scholar

    [66] 陆松年. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 1998. (5): 489-495. doi: 10.3321/j.issn:0371-5736.1998.05.007

    CrossRef Google Scholar

    [67] 郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报, 2003, 48(16): 1705-1720. doi: 10.3321/j.issn:0023-074X.2003.16.001

    CrossRef Google Scholar

    [68] Cawood P A. Metamorphic rocks and plate tectonics[J]. Science Bulletin, 2020, 65(12): 968-969. doi: 10.1016/j.scib.2020.02.016

    CrossRef Google Scholar

    [69] Indares A. Deciphering the metamorphic architecture and magmatic patterns of large hot orogens: Insights from the central Grenville Province[J]. Gondwana Research, 2020, 80: 385-409. doi: 10.1016/j.gr.2019.10.013

    CrossRef Google Scholar

    [70] 彭松柏, 付建明, 刘云华. 大容山-十万大山花岗岩带中A型紫苏花岗岩、麻粒岩包体的发现及意义[J]. 科学技术与工程, 2004, 4(10): 832-834. doi: 10.3969/j.issn.1671-1815.2004.10.006

    CrossRef Google Scholar

    [71] 杨经绥, 史仁灯, 吴才来, 等. 柴达木盆地北缘新元古代蛇绿岩的厘定——罗迪尼亚大陆裂解的证据?[J]. 地质通报, 2004, 23(2/3): 892-898.

    Google Scholar

    [72] 徐佳丽, 周文孝, 赵晓成, 等. 东昆仑诺木洪地区新元古代眼球状花岗片麻岩锆石U-Pb年龄及Hf同位素特征[J]. 矿产勘查, 2020, 11(1): 1-9.

    Google Scholar

    [73] Yuan Y, Zong K Q, Cawood P A, et al. Implication of Mesoproterozoic (similar to 1.4 Ga) magmatism within microcontinents along the southern Central Asian Orogenic Belt[J]. Precambrian Research, 2019, 327: 314-326. doi: 10.1016/j.precamres.2019.03.014

    CrossRef Google Scholar

    [74] 贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 60(4): 389-399.

    Google Scholar

    [75] 叶晓峰, 宗克清, 张泽明, 等. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 2013, 32(2): 307-317. doi: 10.3969/j.issn.1671-2552.2013.02.010

    CrossRef Google Scholar

    [76] 梅华林, 李惠民, 陆松年, 等. 甘肃柳园地区花岗质岩石时代及成因[J]. 岩石矿物学杂志, 1999, (1): 3-5.

    Google Scholar

    [77] 孟勇, 唐淑兰, 王凯, 等. 东天山大白石头南新元古代片麻状花岗岩锆石U-Pb年代学、岩石地球化学及地质意义[J]. 地球科学, 2018, 43(12): 4427-4442.

    Google Scholar

    [78] 胡霭琴, 韦刚健, 张积斌, 等. 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石学报, 2008, 24(12): 2731-2740.

    Google Scholar

    [79] 杨鑫, 徐旭辉, 李慧莉, 等. 塔里木北缘新元古代早期构造演化的锆石U-Pb年代学和地球化学约束[J]. 大地构造与成矿学, 2017, 41(2): 381-395.

    Google Scholar

    [80] 王立社, 张巍, 段星星, 等. 阿尔金环形山花岗片麻岩同位素年龄及成因研究[J]. 岩石学报, 2015, 31(1): 119-132.

    Google Scholar

    [81] 郭进京, 赵凤清, 李怀坤. 中祁连东段晋宁期碰撞型花岗岩及其地质意义[J]. 地球学报, 1999, 20(1): 3-5.

    Google Scholar

    [82] Chen Y B, Hu A Q, Zhang G X, et al. Zircon U-Pb age of granitic gneiss on Duku highway in western Tianshan of China and its geological implications[J]. Chinese Science Bulletin, 2000, 45(7): 649-653. doi: 10.1007/BF02886044

    CrossRef Google Scholar

    [83] Wang J X, Zhang K X, Jin J S, et al. Early Paleozoic Ocean Plate Stratigraphy of the Beishan Orogenic Zone, NW China: Implications for Regional Tectonic Evolution[J]. Acta Geologica Sinica-English Edition, 2020, 94(4): 1042-1059.

    Google Scholar

    [84] Wang J X, Zhang K X, Windley B, et al. A mid-Palaeozoic ocean-continent transition in the Mazongshan subduction-accretion complex, Beishan, NW China: new structural, chemical and age data constrain the petrogenesis and tectonic evolution[J]. Geological Magazine, 2020, 157(11): 1877-1897. doi: 10.1017/S0016756820000114

    CrossRef Google Scholar

    [85] 于海峰, 陆松年, 梅华林, 等. 中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义[J]. 岩石学报, 1999, 15(4): 532-538. doi: 10.3321/j.issn:1000-0569.1999.04.005

    CrossRef Google Scholar

    [86] 杨经绥, 吴才来, 陈松永, 等. 甘肃北山地区榴辉岩的变质年龄: 来自锆石的U-Pb同位素定年证据[J]. 中国地质, 2006, 33(2): 317-325. doi: 10.3969/j.issn.1000-3657.2006.02.010

    CrossRef Google Scholar

    [87] Saktura W M, Buckman S, Nutman A P, et al. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China[J]. Lithos, 2017, 294: 20-38.

    Google Scholar

    [88] Soldner J, Yuan C, Schulmann K, et al. Grenvillean evolution of the Beishan Orogen, NW China: Implications for development of an active Rodinian margin[J]. Geological Society of America Bulletin, 2020, 132(7/8): 1657-1680.

    Google Scholar

    [89] Wang B R, Yang X S, Li S C, et al. Age, depositional environment, and tectonic significance of an Early Neoproterozoic volcano-sedimentary sequence in the eastern Beishan orogenic belt, southern Central Asian Orogenic Belt[J]. Geological Journal, 2021, 56: 1346-1357. doi: 10.1002/gj.3985

    CrossRef Google Scholar

    [90] Pearce J A, Harris N B W, Tindle A G. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [91] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4): 43-55.

    Google Scholar

    [92] 李小伟, 莫宣学, 赵志丹, 等. 关于A型花岗岩判别过程中若干问题的讨论[J]. 地质通报, 2010, 29(2): 278-285. doi: 10.3969/j.issn.1671-2552.2010.02.012

    CrossRef Google Scholar

    [93] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    [94] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [95] 洪大卫, 王式洸, 韩宝福, 等. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 1995, 25(4): 418-426.

    Google Scholar

    [96] 钱青, 王焰. 不同构造环境中双峰式火山岩的地球化学特征[J]. 地质地球化学, 1999, 27(4): 29-32.

    Google Scholar

    [97] Ao S J, Xiao W J, Han C M, et al. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids[J]. Geological Magazine, 2012, 149(4): 606-625. doi: 10.1017/S0016756811000884

    CrossRef Google Scholar

    [98] Song D F, Xiao W J, Han C M, et al. Provenance of metasedimentary rocks from the Beishan orogenic collage, southern Altaids: Constraints from detrital zircon U-Pb and Hf isotopic data[J]. Gondwana Research, 2013, 24(3/4): 1127-1151.

    Google Scholar

    [99] He Z Y, Zhang Z M, Zong K Q, et al. Paleoproterozoic crustal evolution of the Tarim Craton: Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang[J]. Journal of Asian Earth Sciences, 2013, 78: 54-70. doi: 10.1016/j.jseaes.2013.07.022

    CrossRef Google Scholar

    [100] Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113(3/4): 303-341.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(3)

Article Metrics

Article views(2030) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint