Citation: | SHAN Li, NIU Yaoling, MA Shaolong. Petrogenesis of the Neoarchean diorite and hornblendite in the Taishan area, western Shandong: Constraints on crustal evolution[J]. Geological Bulletin of China, 2021, 40(7): 1149-1177. |
The diorite and hornblendite associated with TTG gneisses constitute the important components of Precambrian metamorphic terranes in the Taishan area and their petrogenesis can provide significant insights into understanding the crustal growth and reworking events involving in the evolution of the North China Craton. The lithological, geochronological and geochemical analyses were carried out for the study of the representative diorite and hornblendite in the Taishan area. Zircon U-Pb dating of 1 diorite and 2 hornblendite samples yields 2615 ±8 Ma, 2627 ±14 M and 2616 ±10 Ma respectively, which are consistent with the emplacement age of 2621 ±7 Ma yielded from bulk rock-mineral Rb-Sr isochron dating. They are all magmatic products of the Neoarchean ~2.6 Ga. The similarity of the formation ages and mineral geochemical characteristics of the two intrusives indicates that they are the products of different evolution stages of the homologous magma. The parent magma experienced the influence of separation crystallization in the process of uplift and emplacement in the late stage, while the first hornblende was less affected by separation crystallization. Based on the composition of amphibole and the known amphibole melt partition coefficient, the melt in equilibrium with amphibole in diorite and amphibole is characterized by low Mg# value(mean value is 31.9 and 43.4, respectively), enrichment of large ion lithophile elements such as Ba and Pb, and depletion of high field strength elements such as Nb, Ta, Zr and Ti, and a flat distribution pattern of heavy rare earth elements. In addition, the rocks have a low initial 87Sr/86Sr value close to the εNd(t) value(-0.01~2.87) and εHf(t) value(-0.76~4.89) of the depleted mantle, and the two-stage Nd model age TDM2 ranges from 2.97 Ga to 2.73 Ga. On the basis of these data and in the context of the regional geology, it is inferred that the diorite and hornblendite were probably derived from the partial melting of juvenile mafic lower crust under the amphibolite facies conditions. The initial magma underwent crystallization differentiation of minerals such as plagioclase and hornblende. The west Shandong underwent extensive continental crustal growth at 2.9~2.7 Ga and extensive continental crustal remelting at 2.6~2.5 Ga in the late Neoarchean. The episodic diapirism of mantle derived magma might be one of the main dynamic causes for the growth and differentiation of the continental crust in the Early Neoarchean(2.8~2.6 Ga) of the North China Craton.
[1] | Liu D Y, Nutman A P, Compston W, et al. Remnants of > 3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 1992, 20: 339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 |
[2] | Song B, Allen P N, Liu D Y, et al. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning province, northeastern China[J]. Precambrian Research, 1996, 78: 79-94. doi: 10.1016/0301-9268(95)00070-4 |
[3] | 温德娟. 华北地台北缘鞍山白家坟奥长花岗岩地球化学特征、锆石U-Pb年龄及意义[J]. 地质通报, 2019, 38(10): 1711-1717. |
[4] | Condie K C, Belousova E, Griffin W L, et al. Granidoid events in space and time: Constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4): 228-242. |
[5] | Nutman A P, Wan Y S, Du L L, et al. Multistage Late Neoarchaean crustal evolution of the North China Craton, eastern Hebei[J]. Precambrian Research, 2011, 189(1/2): 43-65. |
[6] | Wan Y S, Wang S J, Liu D Y, et al. Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U-Pb zircon dating[J]. Gondwana Research, 2012, 21(4): 768-784. doi: 10.1016/j.gr.2011.05.017 |
[7] | 彭游博. 辽北开原地区新太古代变质深成岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(5): 670-680. |
[8] | Wan Y S, Xie S W, Yang C H, et al. Early Neoarchean (~2.7 Ga) tectonothermal events in the North China Craton: A synthesis[J]. Precambrian Research, 2014, 247: 45-63. doi: 10.1016/j.precamres.2014.03.019 |
[9] | Wan Y S, Liu D Y, Wang S J, et al. Juvenile magmatism and crustal recycling at the end of the Neoarchean in western Shandong Province, North China Craton: evidence from SHRIMP zircon dating[J]. American Journal of Science, 2010, 310: 1503-1552. doi: 10.2475/10.2010.11 |
[10] | Wan Y S, Liu D Y, Wang S J, et al. 2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from zircon U-Pb dating and Hf isotope composition[J]. Precambrian Research, 2011, 186: 169-180. doi: 10.1016/j.precamres.2011.01.015 |
[11] | Chen Y, Zhang J, Liu J, et al. Crustal growth and reworking of the eastern North China Craton: Constraints from the age and geochemistry of the Neoarchean Taishan TTG gneisses[J]. Precambrian Research, 2020, 343: 105706. doi: 10.1016/j.precamres.2020.105706 |
[12] | Xiao Y Y, Chen S, Niu Y L, et al. Mineral compositions of syn-collisional granitoids and their implications for the formation of juvenile continental crust and adakitic magmatism[J]. Journal of Petrology, 2020, 61(3): egaa038. doi: 10.1093/petrology/egaa038 |
[13] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082 |
[14] | Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003: 1-71. |
[15] | Su Y P, Zheng J P, Griffin W L, et al. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust[J]. Lithos, 2017, 292/293: 1-14. doi: 10.1016/j.lithos.2017.08.017 |
[16] | Sun P, Niu Y L, Guo P Y, et al. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes[J]. Lithos, 2017, 272/273: 16-30. doi: 10.1016/j.lithos.2016.12.005 |
[17] | Chen S, Wang X H, Niu Y L, et al. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS[J]. Science Bulletin, 2017, 62: 277-289. doi: 10.1016/j.scib.2017.01.004 |
[18] | Leake B E, Woolley A R, Arps C E S, et al. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names[J]. The Canadian Mineralogist, 1997, 35: 219-246. |
[19] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[20] | Steiger R H, E Jäger. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359-362. doi: 10.1016/0012-821X(77)90060-7 |
[21] | Lugmair G W, Marti K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39(3): 349-357. doi: 10.1016/0012-821X(78)90021-3 |
[22] | Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 0-324. |
[23] | Blichert-Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X |
[24] | Vervoort J D, Blicherttoft J. Evolution of the depleted mantle: hafnium isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 533-556. |
[25] | Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE china: In-situ analysis of Hf isotopes, tonglu and pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269. |
[26] | Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 1994, 116: 433-447. doi: 10.1007/BF00310910 |
[27] | Anderson J L, Barth A P, Wooden J L, et al. Thermometers and Thermobarometers in Granitic Systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69: 121-142. doi: 10.2138/rmg.2008.69.4 |
[28] | Schmidt M W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology, 1992, 110: 304-310. doi: 10.1007/BF00310745 |
[29] | Putirka K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes[J]. American Mineralogist, 2016, 101: 841-858. doi: 10.2138/am-2016-5506 |
[30] | King P L, Hervig R L, Holloway J R, et al. Partitioning of Fe3+/Fetotal between amphibole and basanitic melt as a function of oxygen fugacity[J]. Earth and Planetary Science Letters, 2000, 178(1/2): 97-112. |
[31] | Zhang L, Han B F, Wei C J, et al. Cumulate hornblendite enclaves in diorite-porphyrite intrusions from the Shuangyashan, Northeast China, and implications for the transition from lower crust to upper mantle in subduction setting[J]. Int. J. Earth Sci. (Geol. Rundsch), 2011, 100: 63-79. doi: 10.1007/s00531-009-0502-9 |
[32] | Cui X H, Zhai M G, Guo J H, et al. Field occurrences and Nd isotopic characteristics of the meta-maficultramafic rocks from the Caozhuang Complex, eastern Hebei: Implications for early Archean crustal evolution of the North China Craton[J]. Precambrian Research, 2018, 310: 425-442. doi: 10.1016/j.precamres.2018.03.006 |
[33] | Niu Y L. Generation and evolution of basaltic magmas: some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11: 9-46. |
[34] | 王伟, 翟明国, M Santosh. 鲁西太古宙表壳岩的成因及其对地壳演化的制约[J]. 地球科学, 2016, 46(7): 949-962. |
[35] | 陈艳红, 杨经绥, 张岚, 等. 西藏泽当蛇绿岩中角闪辉长岩矿物学特征及其成因启示[J]. 中国地质, 2015, 42(5): 1421-1442. doi: 10.3969/j.issn.1000-3657.2015.05.016 |
[36] | Bindeman I N, Davis A M, Drake M J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements[J]. Geochim Cosmochim Acta, 1998, 62(7): 1175-1193. doi: 10.1016/S0016-7037(98)00047-7 |
[37] | Berno D, Tribuzio R, Zanetti A, et al. Evolution of mantle melts intruding the lowermost continental crust: constraints from the Monte Capio-Alpe Cevia mafc-ultramafc sequences (Ivrea-Verbano Zone, northern Italy)[J]. Contributions to Mineralogy and Petrology, 2020, 175: 2. doi: 10.1007/s00410-019-1637-8 |
[38] | Nandedkar R H, Ulmer P, Müntener O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1015. doi: 10.1007/s00410-014-1015-5 |
[39] | Chen S, Niu Y L, Sun W L, et al. On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: evidence from the Baojishan pluton in the North Qilian Orogen, China[J]. Mineralogy and Petrology, 2015, 109: 577-596. doi: 10.1007/s00710-015-0383-5 |
[40] | Shao F L, Niu Y L, Liu Y, et al. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetain Plateau and their tectonic implications[J]. Lithos, 2017, 282/283: 33-44. doi: 10.1016/j.lithos.2017.03.002 |
[41] | Niu Y L, Zhao Z D, Zhu D C, et al. Continental collision zones are primary sites for net continental crust growth-a testable hypothesis[J]. Earth Science Reviews, 2013, 127: 96-110. doi: 10.1016/j.earscirev.2013.09.004 |
[42] | Tiepolo M, Langone A, Morishita T, et al. On the recycling of amphibole-rich ultramafic intrusive rocks in the arc crust: evidence from Shikanoshima Island (Kyushu, Japan)[J]. Journal of Petrology, 2012, 53: 1255-1285. doi: 10.1093/petrology/egs016 |
[43] | Tang G J, Wang Q, Wyman D A, et al. Genesis of pristine adakitic magmas by lower crustal melting: a perspective from amphibole composition[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 1934-1948. |
[44] | Niu Y L, O'Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos, 2009, 112: 1-17. |
[45] | Niu Y L, O'Hara M J. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108: 1-19. |
[46] | Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on geochemistry, 2003, 3: 1-64. |
[47] | Zeng L S, Gao L E, Xie K, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266. |
[48] | Shaw A, Downes H, Thirlwall M F. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian Belt of the French Massif-Central[J]. Chemical Geology, 1993, 107: 1-18. doi: 10.1016/0009-2541(93)90098-4 |
[49] | Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79: 1-24. doi: 10.1016/j.lithos.2004.04.048 |
[50] | Jung S, Hoernes S, Mezger K. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia)[J]. Contributions to Mineralogy and Petrology, 2002, 143: 551-566. doi: 10.1007/s00410-002-0366-5 |
[51] | Grove T L, Elkins-Tanton L T, Parman S W, et al. Fractional crystallization and mantle-melting controls on calcalkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145: 515-533. doi: 10.1007/s00410-003-0448-z |
[52] | Moyen J F. High Sr/Y and La/Yb ratios: The meaning of the "adakitic signature"[J]. Lithos, 2009, 112(3/4): 556-574. |
[53] | Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Singapore: Longman Singapore Publishers (Pte) Ltd., 1993: 352. |
[54] | Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar: Implication for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891 |
[55] | Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0 |
[56] | Cai Y F, Wang Y J, Cawood P A, et al. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008 |
[57] | Wan Y S, Dong C Y, Wang S J, et al. Middle Neoarchean magmatism in western Shandong, North China Craton: SHRIMP zircon dating and LA-ICP-MS Hf isotope analysis[J]. Precambrian Research, 2014, 255: 865-884. doi: 10.1016/j.precamres.2014.07.016 |
[58] | Ren P, Xie H, Wang S, et al. A Ca. 2.60 Ga Tectono-Thermal Event in Western Shandong Province, North China Craton from Zircon U-Pb-O Isotopic Evidence: Plume or Convergent Plate Boundary Process[J]. Precambrian Research, 2016, 281: 236-252. doi: 10.1016/j.precamres.2016.05.016 |
[59] | 马铭株, 万渝生, 颉颃强, 等. 鲁西七星台地区新太古代基性岩浆作用: 变质辉长岩的时代和组成[J]. 地球科学, 2020, 45(7): 2610-2628. |
[60] | Condie K C, Kröner A. The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 23: 394-402. doi: 10.1016/j.gr.2011.09.011 |
[61] | Moyen J F, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148: 312-336. doi: 10.1016/j.lithos.2012.06.010 |
[62] | Green T H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System[J]. Chemical Geology, 1995, 120(3/4): 347-359. |
[63] | 万渝生, 董春艳, 任鹏, 等. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 2017, 33(5): 1405-1419. |
[64] | Polat A, Li J, Fryer B, et al. Geochemical characteristics of the Neoarchean(2800~2700 Ma) Taishan greenstone belt, North China Craton: evidence for plume-craton interaction[J]. Chemical Geology, 2006, 230: 60-87. doi: 10.1016/j.chemgeo.2005.11.012 |
[65] | Jahn B M, Liu D Y, Wan Y S, et al. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 2008, 308: 232-269. doi: 10.2475/03.2008.03 |
[66] | Wang W, Zhang X, Wang S, et al. Geochronology and geochemistry of Neoarchean granitoids from the western Shandong province, north china craton, implications for crustal evolution and cratonization[J]. Precambrian Research, 2017, 303: 749-763. doi: 10.1016/j.precamres.2017.10.007 |
[67] | Wang Y J, Zhang Y Z, Zhao G C, et al. Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids(Shandong): Implications for Neoarchean subduction in the Eastern Block, North China Craton[J]. Precambrian Research, 2009, 174: 273-286. doi: 10.1016/j.precamres.2009.08.005 |
[68] | Wang W, Zhai M G, Wang S J, et al. Crustal reworking in the North China Craton at~2.5 Ga: Evidence from zircon U-Pb age, Hf isotope and whole rock geochemistry of the felsic volcano-sedimenttary rocks from the western Shandong Province[J]. Geological Journal, 2013, 48: 406-428. doi: 10.1002/gj.2493 |
Simplified tectonic map of continents in China(a)and geological map of the Taishan region showing sampling localtion(b)
LA-ICP-MS zircon U-Pb concordia diagrams of the diorite(a)and hornblendites(b~d)in Taishan
Classification of the calcic amphiboles from the diorite and hornblendites in Taishan area
Diagrams of Mg# vs.Al2O3, TiO2, MnO and TFeO contents of amphiboles from diorite and hornblendites in Taishan
Primitive mantle normalized REE patterns(a, c, e)and trace element spider diagrams (b, d, f)of amphibole from diorite and hornblendites in Taishan
Diagrams of whole-rock Rb-Sr isochron(a) and Sm-Nd isochron(b)of diorite(TS19-14)in Taishan
Plots of whole-rock εNd(t)vs.age(a) and εHf(t)vs.age(b)of diorite(TS19-14)in Taishan
The average ocean crust(OC)normalized incompatible element spidergrams(a) and PM normalized REE patterns(b) for calculated compositions of melt in equilibrium with amphibole from diorite and hornblendites in Taishan
Diagrams of SiO2 vs.Eu/Eu*(a~c), Sr/Sr*(d~f), Zr/Sm(g~i) and Dy/Yb(j~l) for calculated compositions of melt in equilibrium with amphibole from Taishan diorite and hornblendites
Mg# vs.SiO2 diagram for the calculated parental magma in equilibrium with amphibole in diorite and hornblendites