2021 Vol. 40, No. 7
Article Contents

GUO Jungang, ZHAO Hengqin, BIAN Xiaodong, SUN Xiaoyan. Characteristics and ecological risk of soil heavy metals of a Tungsten mine in Yudu, Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(7): 1195-1202.
Citation: GUO Jungang, ZHAO Hengqin, BIAN Xiaodong, SUN Xiaoyan. Characteristics and ecological risk of soil heavy metals of a Tungsten mine in Yudu, Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(7): 1195-1202.

Characteristics and ecological risk of soil heavy metals of a Tungsten mine in Yudu, Jiangxi Province

  • The accumulation of heavy metals in soil is generally originated from the persistent exploitation in the mining area, thus clarifying the environmental pollution characteristics of heavy metals in soil and evaluating the ecological risk can provide a basis for monitoring soil environmental quality and preventing soil pollution. A tungsten mine with history of a hundred years in Yudu of southern Jiangxi Province was selected as a case study. Based on the assaying data, single-factor index and Nemerow multifactor index methods were used to assess the quality of soil, then the potential ecological risks of the eight heavy metals were evaluated by Hakanson potential ecological risk index method. The evaluation results show that the single-factor pollution index of Cu, Zn, Cd, Pb and As are 6.74, 3.72, 45.1, 3.36, 8.88, respectively. Cd contributes most to the Nemerow composite pollution index, followed by As, Cu, Pb, and Zn. The average value of the comprehensive potential ecological risk index reaches up to 2065, indicating strong potential hazard. The areas with strong potential heavy metals ecological risk account for 43.89%, which are mainly distributed around mines and their downstream near the river. Correlation analysis of soil heavy metals in the study area shows that Cu, Zn, Cd and Pb are significantly correlated. In conclusion, Cd has a certain potential ecological risk and should be paid more attention, and mineral exploitation activities may be the primary cause of Cu, Zn, Cd, and Pb pollution.

  • 加载中
  • [1] 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 2014, 29(3): 315-320, 350, 封312.

    Google Scholar

    [2] 王斐, 金姝兰, 李季, 等. 江西钨矿周边土壤重金属生态风险评价: 不同评价方法的比较[J]. 环境化学, 2015, 34(2): 225-233.

    Google Scholar

    [3] 刘瑞平, 徐友宁, 张江华. 青藏高原典型金属矿山河流重金属污染对比[J]. 地质通报, 2018, 37(12): 2154-2168.

    Google Scholar

    [4] 刘敬勇. 矿区土壤重金属污染及生态修复[J]. 中国矿业, 2006, 15(12): 66-69. doi: 10.3969/j.issn.1004-4051.2006.12.021

    CrossRef Google Scholar

    [5] Demková Lenka, Július árvay, Lenka Bobulská, et al. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia)[J]. Journal of Environmental Ence & Health Part A Toxic/hazardous Substances & Environmental Engineering, 2017, 52(5): 479-490.

    Google Scholar

    [6] Xu D M, Yan B, Chen T, et al. Contaminant characteristics and environmental risk assessment of heavy metals in the paddy soils from lead (Pb)-zinc (Zn) mining areas in Guangdong Province, South China[J]. Environmental Ence & Pollution Research, 2017, 24(31): 24387-24399.

    Google Scholar

    [7] Qin F X, Wei C F, Zhong S Q, et al. Soil heavy metal(loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China[J]. Journal of Central South University, 2016, 23(9): 2205-2213. doi: 10.1007/s11771-016-3278-7

    CrossRef Google Scholar

    [8] 王菲, 吴泉源, 吕建树, 等. 山东省典型金矿区土壤重金属空间特征分析与环境风险评估[J]. 环境科学, 2016, 37(8): 3144-3150.

    Google Scholar

    [9] 康宏宇, 康日峰, 张乃明, 等. 迪庆某铜矿土壤重金属污染潜在生态风险评价[J]. 环境科学导刊, 2016, 35(1): 75-81. doi: 10.3969/j.issn.1673-9655.2016.01.017

    CrossRef Google Scholar

    [10] Jowett D. Populations of Agnostics spp. tolerant of heavy metals[J]. Nature. 1958, 182: 816-817. doi: 10.1038/182816a0

    CrossRef Google Scholar

    [11] 徐繁昌. 赣南钨矿类型划分及其成矿流体特征[J]. 地质与资源, 2016, 25(4): 339-344. doi: 10.3969/j.issn.1671-1947.2016.04.006

    CrossRef Google Scholar

    [12] 阮瑜瑜, 温珍海. 赣南钨矿区域地质特征及找矿标志[J]. 江西建材, 2015, (23): 219-219. doi: 10.3969/j.issn.1006-2890.2015.23.193

    CrossRef Google Scholar

    [13] 赵庆龄, 张乃弟, 路文如. 土壤重金属污染研究回顾与展望Ⅱ——基于三大学科的研究热点与前沿分析[J]. 环境科学与技术, 2010, 33(7): 102-106.

    Google Scholar

    [14] 龙新宪, 杨肖娥, 倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J]. 应用生态学报, 2002, 13(6): 757-762. doi: 10.3321/j.issn:1001-9332.2002.06.028

    CrossRef Google Scholar

    [15] Surkan P, Zhang A, Trachtenberg F, et al. Neuropsychological Function in Children With Blood Lead Levels[J]. Epidemiology. 2007, 18(Suppl): S55-S56.

    Google Scholar

    [16] Aelion C M, Davis H T, Lawson A B, et al. Associations of estimated residential soil arsenic and lead concentrations and community-level environmental measures with mother-child health conditions in South Carolina[J]. Health & Place, 2012, 18(4): 774-781.

    Google Scholar

    [17] Zhao Q H, Wang Y, Cao Y, et al. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China[J]. Science of the Total Environment, 2014, 470/471(FEB. 1): 340-347.

    Google Scholar

    [18] Cho J, Hyun S, Han J H, et al. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea[J]. Marine Pollution Bulletin, 2015, 95(1): 427-432. doi: 10.1016/j.marpolbul.2015.03.034

    CrossRef Google Scholar

    [19] Salem Z B, Capelli N, Laffray X, et al. Seasonal variation of heavy metals in water, sediment and roach tissues in a landfill draining system pond (Etueffont, France)[J]. Ecological Engineering, 2014, 69: 25-37. doi: 10.1016/j.ecoleng.2014.03.072

    CrossRef Google Scholar

    [20] 张菊, 陈明文, 鲁长娟, 等. 东平湖表层沉积物重金属形态分布特征及环境风险评价[J]. 生态环境学报, 2017, 296(5): 850-856.

    Google Scholar

    [21] 代杰瑞, 庞绪贵, 宋建华, 等. 山东淄博城市和近郊土壤元素地球化学特征及生态风险研究[J]. 中国地质, 2018, 45(3): 617-627.

    Google Scholar

    [22] 顾继光, 周启星, 王新. 土壤重金属污染的治理途径及其研究进展[J]. 应用基础与工程科学学报, 2003, 11(2): 31-39.

    Google Scholar

    [23] 高健翁, 龚晶晶, 杨剑洲, 等. 海南岛琼中黎母山-湾岭地区土壤重金属元素分布特征及生态风险评价[J]. 地质通报, 2021, 40(5): 807-816.

    Google Scholar

    [24] GB 15618-2018. 土壤环境质量农用地土壤污染风险管控标准[S]. 北京: 中国环境出版集团, 2019.

    Google Scholar

    [25] 高军侠, 党宏斌, 郑敏, 等. 郑州市郊农田土壤重金属污染评价[J]. 中国农学通报, 2013, 29(21): 116-120. doi: 10.11924/j.issn.1000-6850.2012-3539

    CrossRef Google Scholar

    [26] Lars Hakanson. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

    CrossRef Google Scholar

    [27] 范拴喜, 甘卓亭, 李美娟, 等. 土壤重金属污染评价方法进展[J]. 中国农学通报, 2010, 26(17): 310-315.

    Google Scholar

    [28] 宋恒飞, 吴克宁, 刘霈珈. 土壤重金属污染评价方法研究进展[J]. 江苏农业科学, 2017, 45(15): 11-14.

    Google Scholar

    [29] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    CrossRef Google Scholar

    [30] 赵永红, 张静, 周丹, 等. 赣南某钨矿区土壤重金属污染状况研究[J]. 中国环境科学, 2015, 35(8): 2477-2484. doi: 10.3969/j.issn.1000-6923.2015.08.028

    CrossRef Google Scholar

    [31] 张铁婵, 常庆瑞, 刘京. 土壤养分元素空间分布不同插值方法研究——以榆林市榆阳区为例[J]. 干旱地区农业研究, 2010, 28(2): 177-182.

    Google Scholar

    [32] 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7): 971-984.

    Google Scholar

    [33] 刘丹, 赵永红, 周丹, 等. 赣南某钨矿区土壤重金属污染生态风险评价[J]. 环境化学, 2017, 36(7): 1557-1567.

    Google Scholar

    [34] 郭鹏然, 雷永乾, 周巧丽, 等. 电镀厂周边环境中重金属分布特征及人体健康暴露风险评价[J]. 环境科学, 2015, 36(9): 3447-3456.

    Google Scholar

    [35] 余璇, 宋柳霆, 滕彦国. 湖南省某铅锌矿土壤重金属污染分析与风险评价[J]. 华中农业大学学报, 2016, 35(5): 27-32.

    Google Scholar

    [36] 赵曦. 大型垃圾焚烧厂周边土壤重金属含量水平、空间分布、来源及潜在生态风险评价[J]. 生态环境学报, 2015, (6): 1013-1021.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(7)

Article Metrics

Article views(1078) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint