2021 Vol. 40, No. 8
Article Contents

CHEN Haifu, HE Shuyue, ZHANG Aikui, SUN Jinlei, YAN Zhengping, LIU Jinlong, ZHANG Liang, QIAN Ye. Petrogenesis and tectonic setting of Middle Silurian A-type granite in Kaerqueka area, East Kunlun[J]. Geological Bulletin of China, 2021, 40(8): 1380-1393.
Citation: CHEN Haifu, HE Shuyue, ZHANG Aikui, SUN Jinlei, YAN Zhengping, LIU Jinlong, ZHANG Liang, QIAN Ye. Petrogenesis and tectonic setting of Middle Silurian A-type granite in Kaerqueka area, East Kunlun[J]. Geological Bulletin of China, 2021, 40(8): 1380-1393.

Petrogenesis and tectonic setting of Middle Silurian A-type granite in Kaerqueka area, East Kunlun

More Information
  • A lot of porphyritic monzogranites are outcropped in the Kaerqueka area, west of the East Kunlun orogenic belt.Zircon U-Pb age and geochemistry of the porphyritic monzonites were studied.Zircon U-Pb dating yields an age of 425±2.3 Ma, indicating Middle Silurian.The rocks are characterized by high contents of SiO2(69.0%~71.2%) and K2O(4.3%~5.54%), enrichment of large ion lithophile element(Rb, K, Th and U), depletion of high field strength element(Nb, Ta and Ti), and strong Eu negative anomaly(Eu/Eu*=0.40~0.51).Their lower content of Cr, Ni(Cr=13.81×10-6~32.9×10-6, Ni=5.48×10-6~12.05×10-6) and the lower Ce/Pb (2.01~4.19) and Nb/U(4.1~7.57) values indicate that they were originated from partial melting of the upper crust.The high ratio of 10000Ga/Al (3.22~3.42), high contents of Zr+Nb+Ce+Y(459×10-6~656×10-6) and zircon saturation temperature(827~881℃) imply they belong to A-type granite.Tectonic diagram and high Y/Nb ratio(2.93~3.15) indicate that they are A2 type granites, and were formed in the post-collision extension setting.Combined with the spatial and temporal distribution of magmatic rocks in the region, it is suggested that the East Kunlun Orogen entered the post-collision extension stage from the Middle Silurian period.

  • 加载中
  • [1] 许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

    CrossRef Google Scholar

    [2] 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11.

    Google Scholar

    [3] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    [4] Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics, 1996, 258(1/4): 215-231.

    Google Scholar

    [5] 陆松年. 青藏高原北部前寒武纪地质初探[M]. 北京: 地质出版社, 2002: 1-125.

    Google Scholar

    [6] 张亚峰, 裴先治, 丁仨平, 等. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LAICP-MS U-Pb年龄及其意义[J]. 地质通报, 2010, 29(1): 79-85 doi: 10.3969/j.issn.1671-2552.2010.01.010

    CrossRef Google Scholar

    [7] 赵振明, 马华东, 王秉璋, 等. 东昆仑早泥盆世碰撞造山的侵入岩证据[J]. 地质论评, 2008, 54(1): 49-58.

    Google Scholar

    [8] 田广阔, 孟繁聪, 范亚洲, 等. 东昆仑早古生代造山后花岗岩的特征——以大干沟花岗岩为例[J]. 岩石矿物学杂志, 2016, 35(3): 371-390. doi: 10.3969/j.issn.1000-6524.2016.03.001

    CrossRef Google Scholar

    [9] 王晓霞, 胡能高, 王涛, 等. 柴达木盆地南缘晚奥陶世万宝沟花岗岩: 锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学[J]. 岩石学报, 2011, 28(9): 2950-2962.

    Google Scholar

    [10] 刘彬, 马昌前, 蒋红安, 等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 2013, 29(6): 2093-2106.

    Google Scholar

    [11] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [12] King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [13] Loiselle M C, Wones D R. Characterization and origin of anorogenic granites[J]. Geological Society of America, Abstracts with Programs, 1979, 11(2): 448-468.

    Google Scholar

    [14] Zhang J, Ma C Q, Xiong F H, et al. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break-off[J]. Lithos, 2014, 210/211: 129-146. doi: 10.1016/j.lithos.2014.10.003

    CrossRef Google Scholar

    [15] Xin Wei, Sun F Y, Li L, et al. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension[J]. Lithos, 2018: 108-127.

    Google Scholar

    [16] 郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICP-MS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(8): 1203-1211. doi: 10.3969/j.issn.1671-2552.2011.08.004

    CrossRef Google Scholar

    [17] 祁晓鹏, 范显刚, 杨杰, 等. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 2016, 35(11): 1771-1783. doi: 10.3969/j.issn.1671-2552.2016.11.002

    CrossRef Google Scholar

    [18] 王艺龙, 李艳军, 魏俊浩, 等. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约[J]. 地球科学——中国地质大学学报, 2018, 43(4): 1219-1236.

    Google Scholar

    [19] 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J]. 大地构造与成矿学, 2013(4): 127-139.

    Google Scholar

    [20] 严威, 邱殿明, 丁清峰, 等. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 443-460.

    Google Scholar

    [21] 陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J]. 矿物岩石, 2013, 33(2): 28-36.

    Google Scholar

    [22] Meng F, Zhang J, Cui M. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 2013, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007

    CrossRef Google Scholar

    [23] 张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(4): 816-817.

    Google Scholar

    [24] 贾丽辉, 孟繁聪, 冯惠彬. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 2014, 30(8): 2339-2350.

    Google Scholar

    [25] 姜春发, 杨经绥, 冯秉贵. 昆仑开合构造[M]. 北京: 地质出版社, 1992: 59-78.

    Google Scholar

    [26] Yuan H, Gao S, Liu X, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2010, 28(3): 353-370.

    Google Scholar

    [27] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1): 59-79.

    Google Scholar

    [28] Hoskin P W O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [29] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [30] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [31] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4): 407-419.

    Google Scholar

    [32] Sun J L, Qian Y, Li Y J, et al. The Late Paleoproterozoic A-Type Granites in the Jiao-Liao-Ji Orogenic Belt, North China Craton: Petrogenesis and Implications for Post-Collision Extension[J]. Geochemistry International, 2021, 59(4), 388-412. doi: 10.1134/S0016702921040078

    CrossRef Google Scholar

    [33] Mushkin A, Navon O, Halicz L, et al. The petrogenesis of A-type magmas from the Amram Massif, southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832 doi: 10.1093/petrology/44.5.815

    CrossRef Google Scholar

    [34] Mingram B, Trumbull R B, Littman S, et al. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components[J]. Lithos, 2000, 54(1): 1-22.

    Google Scholar

    [35] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1): 89-106.

    Google Scholar

    [36] Douce A E P. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    [37] Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [38] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1): 33-45.

    Google Scholar

    [39] Taylor S R, Mclennan S M. The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks[J]. Geology, 1985, 94(4): 196-197.

    Google Scholar

    [40] Wu F Y, Sun D Y, Li H, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173.

    Google Scholar

    [41] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [42] Eby N G. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [43] Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and Isotopic(O, Nd, Pb and Sr) Constraints on A-type Granite Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians[J]. Journal of Petrology, 1996, 37(6): 1463-1489. doi: 10.1093/petrology/37.6.1463

    CrossRef Google Scholar

    [44] Pearce J. Sources and settings of granitic rocks[J]. Episodes, 1996, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    CrossRef Google Scholar

    [45] 刘战庆, 裴先治, 李瑞保, 等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报, 2011, 85(2): 185-194

    Google Scholar

    [46] 李王晔, 李曙光, 郭安林, 等. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约[J]. 中国科学(D辑), 2007, 37(增刊Ⅰ): 288-294

    Google Scholar

    [47] 崔美慧, 孟繁聪, 吴祥珂. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J]. 岩石学报, 2011, 27(11): 3365-3379.

    Google Scholar

    [48] Hao N, Yuan W, Zhang A, et al. Evolution process of the late Silurian-late Devonian tectonic environment in Qimantagh in the western portion of East Kunlun, China: evidence from the geochronology and geochemistry of granitoids[J]. Journal of Earth System Science, 2015, 124: 171-196. doi: 10.1007/s12040-014-0531-z

    CrossRef Google Scholar

    [49] Li J Y, Qian Y, Li H R, et al. The Late Ordovician granitoids in the East Kunlun Orogenic Belt, Northwestern China: petrogenesis and constraints for tectonic evolution of the Proto-Tethys Ocean[J]. International Journal of Earth Sciences, 2020, 109(1): 1439-1461. doi: 10.1007/s00531-019-01787-7

    CrossRef Google Scholar

    [50] 李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄, 地球化学特征及构造意义[J]. 地球学报, 2012, 33(2): 216-226.

    Google Scholar

    [51] 孔会磊, 李金超, 栗亚芝, 等. 青海东昆仑东段加当辉长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质与勘探, 2017, 53(5): 0089-0902.

    Google Scholar

    [52] 陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地学前缘, 2013, 20(6): 1215-1216.

    Google Scholar

    [53] 陈加杰, 付乐兵, 魏俊浩, 等. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约[J]. 地球科学——中国地质大学学报, 2016, 41(11): 1863-1882.

    Google Scholar

    [54] 李瑶. 东昆仑祁漫塔格阿确礅地区古生代花岗岩成因及大地构造意义[D]. 中国地质大学(北京) 硕士学位论文, 2017.

    Google Scholar

    [55] 李瑞保. 东昆仑造山带(东段) 晚古生代-早中生代造山作用研究[D]. 长安大学博士学位论文, 2012.

    Google Scholar

    [56] 李猛, 查显锋, 胡朝斌, 等. 东昆仑西段阿确墩地区白沙河岩组锆石U-Pb年龄——对前寒武纪基底演化的约束[J]. 地质通报, 2021, 40(1): 41-57.

    Google Scholar

    [57] 王冠. 东昆仑造山带镍矿成矿作用研究[D]. 吉林大学博士学位论文, 2014.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(2950) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint