Citation: | HU Changming, LIN Cheng. Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 76-83, 139. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-10 |
Focusing on the uneven settlement of surrounding buildings caused by deep foundation pit dewatering in loess area, this study analyzed the mechanism of ground settlement induced by foundation pit dewatering, deduced the simplified calculation formula of ground settlement caused by dewatering based on the layer-wise summation method and shear displacement method. First, the equation of the cone of depression was derived from Dupuit formula by ignoring group well effect and lateral displacement. The soil around the pit was divided into a drained zone and a saturated zone by the precipitation curve. Then introduce modification factor, and the effective stress increment caused by the reduction of pore water pressure in different loess layers was corrected. Finally, the constraint function of lateral friction located in soil-pile interface towards soil settlement was considered. The settlement at different distances from the dewatering well was calculated respectively, the actual settlement was the sum of the both. Instance calculates was performed based on an engineering example of foundation pit dewatering by finite element software Abaqus, and comparative analysis was carried out between numerical results and measured field data. The research results show that the position where the constraint effect of lateral friction became most significant was at the interface of soil and pile; the accuracy of settlement calculation in this paper was much higher than that of the normative method in the range of 1.5 times of precipitation depth, which can better predicted the ground settlement at different distances around the foundation pit in loess region during dewatering. The study could provide reference for calculating ground subsidence in similar phreatic aquifers.
[1] | 高旭, 郭建波, 晏鄂川. 考虑止水帷幕的深基坑降水预测解析计算[J]. 岩土力学,2018,39(4):1431 − 1439. [GAO Xu, GUO Jianbo, YAN Echuan. Dewatering forecast of deep foundation pit considering waterproof curtain using analytic approach[J]. Rock and Soil Mechanics,2018,39(4):1431 − 1439. (in Chinese with English abstract) |
[2] | XU Y S, WU H N, WANG B Z F, et al. Dewatering induced subsidence during excavation in a Shanghai soft deposit[J]. Environmental Earth Sciences,2017,76(9):1 − 15. |
[3] | WANG J X, DENNG Y S, MA R Q, et al. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering[J]. Journal of Hydrology,2017,549(6):277 − 293. |
[4] | 张莲花, 李荣强, 刘德坊. 基坑降水总应力变化时有效应力增量和沉降量计算[J]. 中国地质灾害与防治学报,2001,12(1):75 − 77. [ZHANG Lianhua, LI Rongqiang, LIU Defang. The calculation of effective stress and settlement based on the variable total stress in pit dewatering[J]. The Chinese Journal of Geological Hazard and Control,2001,12(1):75 − 77. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2001.01.018 |
[5] | 吴意谦, 朱彦鹏. 考虑疏干带非饱和土影响下基坑降水引起地面沉降的计算[J]. 工程力学,2016,33(3):179 − 187. [WU Yiqian, ZHU Yanpeng. Calculation of settlement considering unsaturated soil influence on the dewatering of foundation pits[J]. Engineering Mechanics,2016,33(3):179 − 187. (in Chinese with English abstract) |
[6] | HUGO A. LOÁICIGA. Consolidation Settlement in Aquifers Caused by Pumping[J]. Geotechnical and Geoenvironmental Engineering,2013,62(9):1191 − 1204. |
[7] | 娄平, 赵星, 汤卓, 等. 朝阳站富水砂卵石层施工动态降水控制技术研究[J]. 铁道科学与工程学报,2019,16(2):457 − 463. [LOU Ping, ZHAO Xing, TANG Zhuo, et al. Study on dynamic dewatering control technology for water-rich sandy gravel layer in Chaoyang station[J]. Journal of Railway Science and Engineering,2019,16(2):457 − 463. (in Chinese with English abstract) |
[8] | 杨清源, 赵伯明. 潜水层基坑降水引起地表沉降试验与理论研究[J]. 岩石力学与工程学报,2018,37(6):1506 − 1519. [YANG Qingyuan, ZHAO Boming. Experimental and theoretical study on the surface subsidence by dewatering of foundation pit in phreatic aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1506 − 1519. (in Chinese with English abstract) |
[9] | 苑莲菊, 李振栓, 武胜忠, 等. 渗流工程力学及应用[M]. 北京: 中国建材工业出版社, 2001. YUAN Lianju, LI Zhenshuan, WU Shengzhong, et al. Seepage engineering mechanics and application[M]. Beijing: China Architecture& Building Press, 2001. (in Chinese) |
[10] | GORDON T, HSEIN C K. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(6):731 − 747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731) |
[11] | 胡世春. 西安地铁深基坑降水及降水引起的地表沉降分析[D]. 西安: 西安建筑科技大学, 2014. HU Shichun. Analysis of ground settlement caused by precipitation and precipitation Xi’an subway deep foundation pit[D]. Xi’an: Xi’an University of Architecture and Technology, 2014. (in Chinese with English abstract) |
[12] | POULOS H G. A practical design approach for piles with negative friction[J]. Proceedings of the ICE-Geotechnical Engineering,2008,161(1):19 − 27. doi: 10.1680/geng.2008.161.1.19 |
[13] | 汤光明. 悬挂式止水帷幕对深基坑降水的影响研究[D]. 西安: 西安建筑科技大学, 2011. TANG Guangming. The research of suspended waterproof curtain to the influence of deep foundation pit dewatering[D]. Xi’an : Xi’an University of Architecture and Technology, 2011. (in Chinese with English abstract) |
[14] | 郭海朋, 李文鹏, 王丽亚, 等. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质, 2021, 48(3): 162-171. GUO Haipeng, LI Wenpeng, WANG Liya, et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171.(in Chinese with English abstract) |
[15] | 宋成年, 邓洋, 刘德兵, 等. 基坑不同水位降速下土石围堰松散粘质边坡渗流特性与开挖稳定性研究[J]. 水电能源科学, 2021, 39(2): 69-73. SONG Chengnian, DENG Yang, LIU Debing, et al. Study on seepage characteristics and excavation stability of loose cohesive slope of earth rock cofferdam under different dewatering speed of foundation pit[J]. Water Resources and Power, 2021, 39(2): 69-73.(in Chinese with English abstract) |
[16] | 张哲斐, 冯晓腊, 蔡兵华, 等. 深基坑多层承压含水层中混合井降水技术优化研究[J]. 安全与环境工程, 2021, 28(1): 85-94. ZHANG Zhefei, FENG Xiaola, CAI Binghua, et al. Optimization of precipitation technology of mixed wells in multi-layer confined aquifers of deep foundation pits[J]. Safety and Environmental Engineering, 2021, 28(1): 85-94.(in Chinese with English abstract) |
[17] | 李瑛, 陈东, 刘兴旺, 等. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832. LI Ying, CHEN Dong, LIU Xingwang, et al. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain[J]. Rock and Soil Mechanics, 2021, 42(3): 826-832.(in Chinese with English abstract) |
Single well dewatering diagram
Pile-soil shear stress transfer behavior and pattern while groundwater level drops
Schematic diagram of lateral friction transfer of envelope
Arrangement of dewatering well,observation well and monitoring points
Cumulative change of groundwater level
Ground settlement curve around foundation pit
Constraint value of pit support structure to ground surface settlement
The geometric model of the pit after meshing
Pore pressure after dewatering
Dewatering vector of foundation pit
The settlement curveof ground surface
Comparison of the settlement values from the different distance after dewatering using different methods