2020 Vol. 29, No. 1
Article Contents

TAO Pei-feng, WANG Jian-hua, LI Zhi-zhong, ZHOU Ping, YANG Jia-jia, GAO Fan-qi. RESEARCH OF SOIL NUTRIENT CONTENT INVERSION MODEL BASED ON HYPERSPECTRAL DATA[J]. Geology and Resources, 2020, 29(1): 68-75, 84.
Citation: TAO Pei-feng, WANG Jian-hua, LI Zhi-zhong, ZHOU Ping, YANG Jia-jia, GAO Fan-qi. RESEARCH OF SOIL NUTRIENT CONTENT INVERSION MODEL BASED ON HYPERSPECTRAL DATA[J]. Geology and Resources, 2020, 29(1): 68-75, 84.

RESEARCH OF SOIL NUTRIENT CONTENT INVERSION MODEL BASED ON HYPERSPECTRAL DATA

More Information
  • In order to quickly test the soil nutrient contents (SOM, TN, TP and TS), the authors collect 117 soil samples at 0-20 cm depth from Chuangye Farm in Jiansanjiang reclamation area as research objects. First derivative (FD), logarithmic reciprocal (RL), first derivative of reciprocal (FDR), multivariate scattering correction (MSC) and continuum removal (CR) transformations are performed on the raw spectral reflectance (R). By analyzing the correlation between the six spectral variables and soil nutrient content, the bands that are significantly correlated at the α=0.01 level are adopted as characteristic bands, and the methods of stepwise multiple linear regression (SMLR), partial least squares regression (PLSR) and back propagation neural network (BPNN) are used respectively to establish hyperspectral prediction model of SOM, TN, TP and TS. The model is evaluated by R2, RMSE and RPD. The results show that the soil nutrient content prediction models established by PLSR and BPNN are superior to that by SMLR. The PLSR and BPNN methods can well predict the organic matter and total nitrogen content, and roughly estimate the total sulfur content. Only the CR-BPNN method can roughly estimate the total phosphorus content. The models with the best prediction effect on SOM, TN, TP and TS are, respectively, MSC-PLSR, MSC-PLSR, CR-BPNN and FDR-BPNN, with the validation set determination coefficients of 0.86, 0.75, 0.56 and 0.67 respectively.

  • 加载中
  • [1] 史舟.土壤地面高光谱遥感原理与方法[M].北京:科学出版社, 2014:6-7.

    Google Scholar

    [2] Dalal R C, Henry R J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50(1):120-123. doi: 10.2136/sssaj1986.03615995005000010023x

    CrossRef Google Scholar

    [3] Conforti M, Buttafuoco G, Leone A P, et al. Studying the relationship between water-induced soil erosion and soil organic matter using Vis NIR spectroscopy and geomorphological analysis:a case study in southern Italy[J]. CATENA, 2013, 110:44-58. doi: 10.1016/j.catena.2013.06.013

    CrossRef Google Scholar

    [4] 于雷, 洪永胜, 耿雷, 等.基于偏最小二乘回归的土壤有机质含量高光谱估算[J].农业工程学报, 2015, 31(14):103-109. doi: 10.11975/j.issn.1002-6819.2015.14.015

    CrossRef Google Scholar

    [5] 张东辉, 赵英俊, 秦凯, 等.光谱变换方法对黑土养分含量高光谱遥感反演精度的影响[J].农业工程学报, 2018, 34(20):141-147. doi: 10.11975/j.issn.1002-6819.2018.20.018

    CrossRef Google Scholar

    [6] 徐彬彬.土壤剖面的反射光谱研究[J].土壤, 2000, 32(6):281-287. doi: 10.3321/j.issn:0253-9829.2000.06.001

    CrossRef Google Scholar

    [7] 杜森, 高祥照.土壤分析技术规范[M]. 2版.北京:中国农业出版社, 2006:166-167.

    Google Scholar

    [8] 黄明祥, 王珂, 史舟, 等.土壤高光谱噪声过滤评价研究[J].光谱学与光谱分析, 2009, 29(3):722-725. doi: 10.3964/j.issn.1000-0593(2009)03-0722-04

    CrossRef Google Scholar

    [9] 刘焕军, 张柏, 赵军, 等.黑土有机质含量高光谱模型研究[J].土壤学报, 2007, 44(1):27-32. doi: 10.3321/j.issn:0564-3929.2007.01.005

    CrossRef Google Scholar

    [10] 陈奕云, 齐天赐, 黄颖菁, 等.土壤有机质含量可见-近红外光谱反演模型校正集优选方法[J].农业工程学报, 2017, 33(6):107-114.

    Google Scholar

    [11] 卢艳丽.东北平原土壤有机质及主要养分高光谱定量反演[D].北京: 中国农业科学院, 2007.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1422793

    Google Scholar

    [12] 汪大明, 秦凯, 李志忠, 等.基于航空高光谱遥感数据的黑土地有机质含量反演:以黑龙江省建三江地区为例[J].地球科学, 2018, 43(6):2184-2194.

    Google Scholar

    [13] 沈润平, 丁国香, 魏国栓, 等.基于人工神经网络的土壤有机质含量高光谱反演[J].土壤学报, 2009, 46(3):391-397. doi: 10.3321/j.issn:0564-3929.2009.03.003

    CrossRef Google Scholar

    [14] 刘妍.基于Hymap数据的土壤As含量反演研究[D].北京: 中国地质大学(北京), 2018.http://cdmd.cnki.com.cn/Article/CDMD-11415-1018084036.htm

    Google Scholar

    [15] 薛利红, 周鼎浩, 李颖, 等.不同利用方式下土壤有机质和全磷的可见近红外高光谱反演[J].土壤学报, 2014, 51(5):993-1002.

    Google Scholar

    [16] 周鼎浩, 薛利红, 李颖, 等.基于可见-近红外光谱的水稻土全磷反演研究[J].土壤, 2014, 46(1):47-52. doi: 10.3969/j.issn.1009-2242.2014.01.009

    CrossRef Google Scholar

    [17] Zhang T T, Li L, Zheng B J. Estimation of agricultural soil properties with imaging and laboratory spectroscopy[J]. Journal of Applied Remote Sensing, 2013, 7(1):073587. doi: 10.1117/1.JRS.7.073587

    CrossRef Google Scholar

    [18] 何挺, 王静, 林宗坚, 等.土壤有机质光谱特征研究[J].武汉大学学报(信息科学版), 2006, 31(11):975-979.

    Google Scholar

    [19] 贺军亮, 蒋建军, 周生路, 等.土壤有机质含量的高光谱特性及其反演[J].中国农业科学, 2007, 40(3):638-643. doi: 10.3321/j.issn:0578-1752.2007.03.030

    CrossRef Google Scholar

    [20] 沙晋明, 陈鹏程, 陈松林.土壤有机质光谱响应特性研究[J].水土保持研究, 2003, 10(2):21-24, 54. doi: 10.3969/j.issn.1005-3409.2003.02.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(5)

Article Metrics

Article views(2187) PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint