2020 Vol. 29, No. 1
Article Contents

LI Kai, HE Zhi-peng, XIE Jian-wen. THE APLLICATION OF DIGITAL IMAGE TECHNIQUES IN GEOTECHNICAL RESEARCHES: A Review[J]. Geology and Resources, 2020, 29(1): 106-112.
Citation: LI Kai, HE Zhi-peng, XIE Jian-wen. THE APLLICATION OF DIGITAL IMAGE TECHNIQUES IN GEOTECHNICAL RESEARCHES: A Review[J]. Geology and Resources, 2020, 29(1): 106-112.

THE APLLICATION OF DIGITAL IMAGE TECHNIQUES IN GEOTECHNICAL RESEARCHES: A Review

  • The digitalization and information technology has added new research methods for geotechnical engineering in all aspects. The digital image technique is broadly applied in the researches of macroscopic deformation and invisible scales as well. The application in macroscopic deformation involves small scale experimental testing and large scale geo-hazard monitoring. For invisible scales, the applications are in the areas of microstructure, high-speed dynamics and acoustic imaging. The digital image technique plays a significant role in stress detection, especially in geotechnical engineering combined with photoelastic experiment.

  • 加载中
  • [1] 包承纲.岩土工程试验研究中的若干新进展[J].岩土力学, 2011, 32(S2):1-9.

    Google Scholar

    [2] 陈从新, 刘秀敏, 刘才华.数字图像技术在岩石细观力学研究中的应用[J].岩土力学, 2010, 31(S1):53-61.

    Google Scholar

    [3] 王慧妮, 倪万魁.基于计算机X射线断层术与扫描电镜图像的黄土微结构定量分析[J].岩土力学, 2012, 33(1):243-247, 254.

    Google Scholar

    [4] 彭瑞东, 翁炜, 左建平, 等.数字散斑相关法在SEM观测岩石变形时的应用[J].中国矿业大学学报, 2012, 41(4):650-656.

    Google Scholar

    [5] Sang Y, Zhao J L, Duan F H, et al. A novel automatic device to measure deformation inside transparent soil based on digital image correlation technology[J]. Measurement Science and Technology, 2019, 30(3):035202. doi: 10.1088/1361-6501/aafaa0

    CrossRef Google Scholar

    [6] 朱万成, 康玉梅, 杨天鸿, 等.基于数字图像的岩石非均匀性表征技术在流固耦合分析中的应用[J].岩土工程学报, 2006, 28(12):2087-2091.

    Google Scholar

    [7] 赵永红, 王航, 张琼, 等.滑坡位移监测方法综述[J].地球物理学进展, 2018, 33(6):2606-2612.

    Google Scholar

    [8] Huang Y, Yu M, Xu Q, et al. InSAR-derived digital elevation models for terrain change analysis of earthquake-triggered flow-like landslides based on ALOS/PALSAR imagery[J]. Environmental Earth Sciences, 2015, 73(11):7661-7668. doi: 10.1007/s12665-014-3939-5

    CrossRef Google Scholar

    [9] 张庆云, 张景发, 刘国林, 等.基于高级InSAR时序分析方法的高速公路沉降分析[J].科学技术与工程, 2018, 18(20):20-26.

    Google Scholar

    [10] 史永跃, 尚彦军, 孙元春, 等.超声波成像钻孔电视在工程勘察中的应用[J].工程勘察, 2010, 38(8):82-87, 92.

    Google Scholar

    [11] Allersma H G B. Using digital image processing in field measurement[J]. Géotechnique, 1996, 46(3):561-563. doi: 10.1680/geot.1996.46.3.561

    CrossRef Google Scholar

    [12] Lee C, An S, Lee W. Real-time monitoring of SPT donut hammer motion and SPT energy transfer ratio using digital line-scan camera and pile driving analyzer[J]. Acta Geotechnica, 2014, 9(6)959-968. doi: 10.1007/s11440-012-0197-0

    CrossRef Google Scholar

    [13] Towhata I, Kawamata Y, Nakayama M, et al. E-Defense shaking test on large model of underground shaft and tunnels[M]//Yoo C, Park S W, Kim B, et al. Geotechnical Aspects of Underground Construction in Soft Ground. New York: CRC Press, 2015: 31-40.

    Google Scholar

    [14] Alshibli K A, Sture S. Sand shear band thickness measurements by digital imaging techniques[J]. Journal of Computing in Civil Engineering, 1999, 13(2):103-109.

    Google Scholar

    [15] Salazar S E, Barnes A, Coffman R A. Development of an internal camera based volume determination system for triaxial testing[J]. Geotechnical Testing Journal, 2015, 38(4):549-555.

    Google Scholar

    [16] Lin Q, Labuz J F. Fracture of sandstone characterized by digital image correlation[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60:235-245. doi: 10.1016/j.ijrmms.2012.12.043

    CrossRef Google Scholar

    [17] Shi Z M, Wang Y Q, Peng M, et al. Landslide dam deformation analysis under aftershocks using large-scale shaking table tests measured by videogrammetric technique[J]. Engineering Geology, 2015, 186:68-78. doi: 10.1016/j.enggeo.2014.09.008

    CrossRef Google Scholar

    [18] Krim J, Yu P D, Behringer R P. Stick-slip and the transition to steady sliding in a 2D granular medium and a fixed particle lattice[J]. Pure and Applied Geophysics, 2011, 168(12):2259-2275. doi: 10.1007/s00024-011-0364-5

    CrossRef Google Scholar

    [19] Herbert D M, Gardner D R, Harbottle M, et al. The development of a new method for testing the lateral load capacity of small-scale masonry walls using a centrifuge and digital image correlation[J]. Construction and Building Materials, 2011, 25(12):4465-4476. doi: 10.1016/j.conbuildmat.2011.02.002

    CrossRef Google Scholar

    [20] Huang Y, Mao W W. First results derived from a drop-tower testing system for granular flow in a microgravity environment[J]. Landslides, 2013, 10(4):493-501. doi: 10.1007/s10346-013-0403-7

    CrossRef Google Scholar

    [21] White D J, Take W A, Bolton M D. Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7):619-631. doi: 10.1680/geot.2003.53.7.619

    CrossRef Google Scholar

    [22] Wolf H, König D, Triantafyllidis T. Experimental investigation of shear band patterns in granular material[J]. Journal of Structural Geology, 2003, 25(8):1229-1240. doi: 10.1016/S0191-8141(02)00163-3

    CrossRef Google Scholar

    [23] Matziaris V, Marshall A M, Yu H S. Centrifuge model tests of rainfall-induced landslides[M]//Yu W. Recent Advances in Modeling Landslides and Debris Flows. Cham: Springer, 2015: 73-83.

    Google Scholar

    [24] Tralli D M, Blom R G, Zlotnicki V, et al. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(4):185-198. doi: 10.1016/j.isprsjprs.2005.02.002

    CrossRef Google Scholar

    [25] Arnous M O, Green D R. GIS and remote sensing as tools for conducting geo-hazards risk assessment along Gulf of Aqaba coastal zone, Egypt[J]. Journal of Coastal Conservation, 2011, 15(4):457-475. doi: 10.1007/s11852-010-0136-x

    CrossRef Google Scholar

    [26] 赵慧俊, 马月辉, 刘宁宁, 等.基于数字图像处理的隧道围岩形变量测[J].现代电子技术, 2018, 41(21):76-79.

    Google Scholar

    [27] 何国华, 刘新根, 陈莹莹, 等.基于数字图像的隧道表观病害识别方法研究[J].重庆交通大学学报(自然科学版), 2019, 38(3):21-26.

    Google Scholar

    [28] 周奇才, 孙月腾, 陈海燕, 等.地铁隧道变形监测的数字图像处理技术研究[J].中国工程机械学报, 2009, 7(4):463-468.

    Google Scholar

    [29] Alshibli K A, Alsaleh M I. Characterizing surface roughness and shape of sands using digital microscopy[J]. Journal of Computing in Civil Engineering, 2004, 18(1):36-45.

    Google Scholar

    [30] 张波, 陶连金, 黄俊, 等.基于微观图像处理技术的土体三轴试验颗粒流模型[J].工业建筑, 2013, 43(4):86-91.

    Google Scholar

    [31] 朱泽奇, 肖培伟, 盛谦, 等.基于数字图像处理的非均质岩石材料破坏过程模拟[J].岩土力学, 2011, 32(12):3780-3786.

    Google Scholar

    [32] 徐文杰, 岳中琦, 胡瑞林.基于数字图像的土、岩和混凝土内部结构定量分析和力学数值计算的研究进展[J].工程地质学报, 2007, 15(3):289-313.

    Google Scholar

    [33] 聂志红, 袁梦, 王翔.粗粒土的粒间孔隙特征与其影响因素的相关性研究[J].铁道科学与工程学报, 2018, 15(7):1700-1707.

    Google Scholar

    [34] 刘春, 许强, 施斌, 等.岩石颗粒与孔隙系统数字图像识别方法及应用[J].岩土工程学报, 2018, 40(5):925-931.

    Google Scholar

    [35] Kozaki T, Suzuki S, Kozai N, et al. Observation of microstructures of compacted bentonite by microfocus X-ray computerized tomography (Micro-CT)[J]. Journal of Nuclear Science and Technology, 2001, 38(8):697-699. doi: 10.1080/18811248.2001.9715085

    CrossRef Google Scholar

    [36] 宋义敏, 马少鹏, 杨小彬, 等.岩石变形破坏的数字散斑相关方法研究[J].岩石力学与工程学报, 2011, 30(1):170-175.

    Google Scholar

    [37] Wong L N Y, Einstein H H. Using high speed video imaging in the study of cracking processes in rock[J]. Geotechnical Testing Journal, 2009, 32(2):164-180.

    Google Scholar

    [38] 王宇, 李晓, 胡瑞林, 等.岩土超声波测试研究进展及应用综述[J].工程地质学报, 2015, 23(2):287-300.

    Google Scholar

    [39] 王锡勇, 苏锐, 陈亮, 等.基于超声波钻孔电视的深部岩体结构面特征研究[J].世界核地质科学, 2014, 31(1):39-44, 62.

    Google Scholar

    [40] Benson P M, Thompson B D, Meredith P G, et al. Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography[J]. Geophysical Research Letters, 2007, 34(3):L03303.

    Google Scholar

    [41] 宋义敏, 邢同振, 赵同彬, 等.岩石单轴压缩变形场演化的声发射特征研究[J].岩石力学与工程学报, 2017, 36(3):534-542.

    Google Scholar

    [42] Gutowski M, Bull J M, Dix J K, et al. 3D high-resolution acoustic imaging of the sub-seabed[J]. Applied Acoustics, 2006, 69(3):262-271.

    Google Scholar

    [43] Vardy M E. Deriving shallow-water sediment properties using post-stack acoustic impedance inversion[J]. Near Surface Geophysics, 2015, 13(2):143-154. doi: 10.3997/1873-0604.2014045

    CrossRef Google Scholar

    [44] 丁秀丽, 李耀旭, 王新.基于数字图像的土石混合体力学性质的颗粒流模拟[J].岩石力学与工程学报, 2010, 29(3):477-484.

    Google Scholar

    [45] 严成增, 郑宏, 孙冠华, 等.基于数字图像技术的岩土材料有限元-离散元分析[J].岩土力学, 2014, 35(8):2408-2414.

    Google Scholar

    [46] 刘建国, 孙其诚, 金峰.光弹法检测颗粒物质体系中的力链结构[C]//中国力学学会学术大会2009论文摘要集.郑州: 中国力学学会, 郑州大学, 2009: 1.

    Google Scholar

    [47] 侯明勋.颗粒介质接触应力网格测试及拱效应特性研究[D].广州: 华南理工大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10561-1016771267.htm

    Google Scholar

    [48] Zheng H, Dijksman J A, Behringer R P. Shear jamming in granular experiments without basal friction[J]. EPL (Europhysics Letters), 2014, 107(3):34005. doi: 10.1209/0295-5075/107/34005

    CrossRef Google Scholar

    [49] Wang D, Ren J, Dijksman J A, et al. Microscopic origins of shear jamming for 2D frictional grains[J]. Physical Review Letters, 2018, 120(20):208004. doi: 10.1103/PhysRevLett.120.208004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(1316) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint