2020 Vol. 29, No. 3
Article Contents

JIANG Shao-qing, XU Yi, SUN Shang-xin, WANG Ce, LI Li. GLOBAL DISTRIBUTION OF LEAD-ZINC RESOURCES[J]. Geology and Resources, 2020, 29(3): 224-232.
Citation: JIANG Shao-qing, XU Yi, SUN Shang-xin, WANG Ce, LI Li. GLOBAL DISTRIBUTION OF LEAD-ZINC RESOURCES[J]. Geology and Resources, 2020, 29(3): 224-232.

GLOBAL DISTRIBUTION OF LEAD-ZINC RESOURCES

  • The lead-zinc resources are abundant in the world and distributed in more than 50 countries. By collecting the data and information of lead-zinc deposits at home and abroad, based on the systematic review of the data of 1035 Pb-Zn deposits and 3319 occurrences/mineralized spots in the world, the paper comparatively studies the resources and reserves of global Pb-Zn deposits from different data sources, comprehensively analyzes the resources distribution and spatiotemporal distribution regularity of mineralization for the three major genetic types including sedimentary exhalative (SEDEX), volcanic massive sulfide (VMS) and Mississippi Valley-type (MVT), and summarizes the deposit reserves, resources, grades, metallogenic types and characteristics of the worldwide large Pb-Zn deposits, to provide reference for the comprehensive research of global Pb-Zn deposits.

  • 加载中
  • [1] International Lead and Zinc Study Group (ILZSG). Lead and zinc new mine and smelter projects[Z]. 2019: 1-65.

    Google Scholar

    [2] U.S. Geological Survey. Mineral commodity summaries 2019[Z]. U.S. Geological Survey, 2019: 200.

    Google Scholar

    [3] S&P. S&P Global market intelligence[R]. 2018.

    Google Scholar

    [4] 中华人民共和国自然资源部. 2019年中国矿产资源报告[M].北京:地质出版社, 2019:1-54.

    Google Scholar

    [5] 戴自希, 盛继福, 白冶, 等.世界铅锌资源的分布与潜力[M].北京:地震出版社, 2005:1-212.

    Google Scholar

    [6] 张明超, 李景朝, 李鹏远, 等.国内外铅锌矿资源及分布概述[J].中国矿业, 2016, 25(S1):41-45, 103.

    Google Scholar

    [7] 宋玉财, 侯增谦, 刘英超, 等.特提斯域的密西西比河谷型(MVT)铅锌矿床[J].中国地质, 2017, 44(4):664-689.

    Google Scholar

    [8] Mudd G M, Jowitt S M, Werner T T. The world's lead-zinc mineral resources:Scarcity, data, issues and opportunities[J]. Ore Geology Reviews, 2017, 80:1160-1190. doi: 10.1016/j.oregeorev.2016.08.010

    CrossRef Google Scholar

    [9] 韩发, 孙海田. SEDEX型矿床成矿系统[J].地学前缘, 1999, 6(1):139-142. doi: 10.3321/j.issn:1005-2321.1999.01.012

    CrossRef Google Scholar

    [10] Emsbo P, Seal R R, Breit G N, et al. Sedimentary exhalative (SEDEX) zinc-lead-silver deposit model[R]. U.S. Geological Survey Scientific Investigations Report 2010-5070-N, 2016: 57.

    Google Scholar

    [11] 李文渊.块状硫化物矿床的类型、分布和形成环境[J].地球科学与环境学报, 2007, 29(4):331-344. doi: 10.3969/j.issn.1672-6561.2007.04.001

    CrossRef Google Scholar

    [12] Mosier D L, Singer D A, Berger V I. Volcanogenic massive sulfide deposit density[R]. Scientific Investigations Report, 2007. U.S. Geological Survey, 2007: 1-21.

    Google Scholar

    [13] Mosier D L, Berger V I, Singer D A. Volcanogenic massive sulfide deposits of the world-database and grade and tonnage models[R]. U. S. Geological Survey Open-File Report 2009-1034. U.S. Geological Survey, 2009.

    Google Scholar

    [14] Shanks Ⅲ W C P, Thurston R. Volcanogenic massive sulfide occurrence model[R]. U.S. Geological Survey Scientific Investigations Report 2010-5070-C. U.S. Geological Survey, 2012: 345.

    Google Scholar

    [15] Leach D L, Taylor R D. Mississippi Valley-type lead-zinc deposit model[R]. U.S. Geological Survey Open-File Report 2009-1213. U.S. Geological Survey, 2009: 5.

    Google Scholar

    [16] 张长青, 余金杰, 毛景文, 等.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质, 2009, 28(2):195-210. doi: 10.3969/j.issn.0258-7106.2009.02.008

    CrossRef Google Scholar

    [17] Leach D L, Taylor R D, Fey D L, et al. A deposit model for Mississippi Valley-Type lead-zinc ores: Chap. A of Mineral Deposit Models for Resource Assessment[R]. U.S. Geological Survey Scientific Investigations Report 2010-5070-A. U.S. Geological Survey, 2010: 2.

    Google Scholar

    [18] 董连慧, 徐兴旺, 范廷宾, 等.喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J].新疆地质, 2015, 33(1):41-50. doi: 10.3969/j.issn.1000-8845.2015.01.008

    CrossRef Google Scholar

    [19] 范廷宾, 余元军, 夏明毅, 等.新疆和田县火烧云铅锌矿地质特征及其找矿[J].四川地质学报, 2017, 37(4):578-582. doi: 10.3969/j.issn.1006-0995.2017.04.011

    CrossRef Google Scholar

    [20] 张志斌, 李建华, 黄超义, 等.东升庙矿床成因和找矿研究[J].吉林大学学报(地球科学版), 2010, 40(4):791-800.

    Google Scholar

    [21] 王秀福, 王凡, 刘培栋, 等.朝鲜检德矿田地质特征[J].矿产与地质, 2016, 30(4):626-632. doi: 10.3969/j.issn.1001-5663.2016.04.018

    CrossRef Google Scholar

    [22] Wang C M, Deng J, Carranza E J M, et al. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China[J]. Ore Geology Reviews, 2014, 56:327-351. doi: 10.1016/j.oregeorev.2013.06.004

    CrossRef Google Scholar

    [23] Vikentev I V, Simonov V A, Borisova A Y, et al. Volcanic-hosted massive sulfide deposits of the Urals, Russia: Evidence for a magmatic contribution of metals and fluid[C]//Proceedings of 12th Biennial SGA Meeting. Uppsala, 124-248.

    Google Scholar

    [24] 侯增谦.现代与古代海底热水成矿作用:以若干火山成因块状硫化物矿床为例[M].北京:地质出版社, 2003:1-158.

    Google Scholar

    [25] Paradis S, Hannigan P, Dewing K. Mississippi Valley-type lead-zinc deposits (MVT)[C]//Goodfellow W D. Mineral Deposits of Canada. Canada: Geological Association of Canada, 2007: 5.

    Google Scholar

    [26] 许典葵, 黄智龙, 邓红, 等.云南会泽超大型铅锌矿床的矿床模型[J].矿物学报, 2009, 29(2):235-242. doi: 10.3321/j.issn:1000-4734.2009.02.017

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(5)

Article Metrics

Article views(2942) PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint