2020 Vol. 29, No. 3
Article Contents

JIANG Hai. STUDY ON THE FIELD MEASUREMENT METHOD OF ROCK THERMAL CONDUCTIVITY[J]. Geology and Resources, 2020, 29(3): 282-288.
Citation: JIANG Hai. STUDY ON THE FIELD MEASUREMENT METHOD OF ROCK THERMAL CONDUCTIVITY[J]. Geology and Resources, 2020, 29(3): 282-288.

STUDY ON THE FIELD MEASUREMENT METHOD OF ROCK THERMAL CONDUCTIVITY

  • Thermal conductivity coefficient, as one of the important physical parameters of rock, is of great significance in geothermal energy development and geotechnical thermal engineering application. The current test method requires the collected rock samples to be processed in the laboratory. The transportation and processing can damage the rock structure and affect the water content. It needs a complex test process, and yields inaccurate results. This study proposes a new test method to obtain the thermal conductivity coefficient of rock on site. The contact surface between rock surface and probe is filled with thermal coupling agent to reduce thermal contact resistance during the test process, and the field thermal conductivity test is carried out with the aid of the thermophysical property tester. The optimal ratio of thermal coupling agent is determined by the comparison experiment of preparing thermal coupling agents by fully mixing different amounts of thermally conductive silicone grease and copper powder. The experiment shows that the application of thermal coupling agent can effectively reduce the thermal contact resistance between probe and rock surface, and improve the test precision. Moreover, the thermal coupling agent itself has little effect on the thermal conductivity coefficient of rock. The research results can provide reference for obtaining thermal conductivity coefficient of rock accurately and conveniently in the field.

  • 加载中
  • [1] Midttømme K, Roaldset E, Aagaard P. Thermal conductivity of selected claystones and mudstones from England[J]. Clay Minerals, 1998, 33(1):131-145.

    Google Scholar

    [2] 许模, 王迪, 蒋良文, 等.岩土体导热系数研究进展[J].地球科学与环境学报, 2011, 33(4):421-427, 433.

    Google Scholar

    [3] 欧新功, 金振民, 王璐, 等.中国大陆科学钻探主孔100~2000 m岩石热导率及其各向异性:对研究俯冲带热结构的启示[J].岩石学报, 2004, 20(1):109-118.

    Google Scholar

    [4] Bloomer J R. Thermal conductivities of mudrocks in the United Kingdom[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1981, 14(4):357-362.

    Google Scholar

    [5] Sundberg J, Back P E, Ericsson L O, et al. Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6):1023-1028.

    Google Scholar

    [6] Moench A F, Evans D D. Thermal conductivity and diffusivity of soil using a cylindrical heat source[J]. Soil Science Society of America Journal, 1970, 34(3):377-381.

    Google Scholar

    [7] Menberg K, Steger H, Zorn R, et al. Determination of thermal conductivity in the subsurface using laboratory and field experiments and theoretical models[J]. Grundwasser, 2013, 18(2):103-116.

    Google Scholar

    [8] Blázquez C S, Martín A F, Nieto I M, et al. Thermal conductivity map of the Avila region (Spain) based on thermal conductivity measurements of different rock and soil samples[J]. Geothermics, 2017, 65:60-71.

    Google Scholar

    [9] Çanakci H, Demirboğa R, Karakoç M B, et al. Thermal conductivity of limestone from Gaziantep (Turkey)[J]. Building and Environment, 2007, 42(4):1777-1782.

    Google Scholar

    [10] Stylianou I I, Tassou S, Christodoulides P, et al. Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus[J]. Renewable Energy, 2016, 88:418-429.

    Google Scholar

    [11] 张平, 宣益民, 李强.界面接触热阻的研究进展[J].化工学报, 2012, 63(2):335-349.

    Google Scholar

    [12] 许强.导热硅橡胶的制备和性能研究[D].济南: 山东大学, 2010.

    Google Scholar

    [13] 刘汉, 吴宏武.填充型导热高分子复合材料研究进展[J].塑料工业, 2011, 39(4):10-13.

    Google Scholar

    [14] Wang L, Li F P, Su Z T. Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber[J]. Journal of Applied Polymer Science, 2008, 108(5):2968-2974.

    Google Scholar

    [15] 韩志慧, 刘传超, 范和平.导热绝缘胶粘剂的研究进展及其在金属基板上的应用[C]//CPCA2011春季国际PCB技术/信息论坛论文集.上海: 中国印制电路行业协会, 2011: 9-16.

    Google Scholar

    [16] 王秀丽.高性能热界面材料的制备与接触热阻实验研究[D].南京: 南京理工大学, 2014.

    Google Scholar

    [17] 周文英, 齐暑华, 李国新, 等.导热胶粘剂研究[J].材料导报, 2005, 19(5):26-29, 33.

    Google Scholar

    [18] 张捷.界面处理对材料导热性能影响的研究[D].南京: 南京航空航天大学, 2015.

    Google Scholar

    [19] 乔宇, 骆进, 项伟, 等.秭归地区陆源碎屑岩导热系数试验研究[J].地质科技情报, 2019, 38(1):82-89.

    Google Scholar

    [20] 谢华清, 王锦昌, 程曙霞, 等.热针法测量材料导热系数研究[J].应用科学学报, 2002, 20(1):6-9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(8)

Article Metrics

Article views(662) PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint