2021 Vol. 41, No. 4
Article Contents

YU Jinyong, LI Li, HE Juan, JIA Guodong. The mystery of the Sunda shelf vegetation during the last glacial period[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 129-141. doi: 10.16562/j.cnki.0256-1492.2020103101
Citation: YU Jinyong, LI Li, HE Juan, JIA Guodong. The mystery of the Sunda shelf vegetation during the last glacial period[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 129-141. doi: 10.16562/j.cnki.0256-1492.2020103101

The mystery of the Sunda shelf vegetation during the last glacial period

More Information
  • Changes in the vegetation of the Sunda shelf exposed during the last ice period at low sea level have important implications for global carbon cycle impacts. However, the results of current vegetation reconstructions are still highly controversial. A paleo-vegetation reconstruction was conducted using the available carbon isotope and pollen records of the last ice age in the Sunda shelf region. Compared to the Holocene, the distribution range of tropical rainforests contracted toward the equator during the last glacial period, showing an uneven zonal distribution pattern, while the herbaceous vegetation expanded in the regions far from the equator. The southward shift of the Intertropical Convergence Zone and the overall decrease of precipitation in the Sunda shelf region due to the El Niño-like state of the tropical Pacific Ocean are important reasons for this phenomenon. Mountains play an essential role in the evolution of the vertical distribution structure of vegetation during the ice age. In the wet and cold regions, montane rainforests expanded downward, while in the dry and cold regions, mountains played the role of rainforest refuges. The reconstruction of ancient vegetation on the Sunda shelf still faces difficulties such as cryptic vegetation and limitations of vegetation indicators, and more work is needed to improve it.

  • 加载中
  • [1] Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications [J]. Earth-Science Reviews, 2011, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006

    CrossRef Google Scholar

    [2] Hanebuth T J J, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited [J]. Global and Planetary Change, 2009, 66(1-2): 76-84. doi: 10.1016/j.gloplacha.2008.03.011

    CrossRef Google Scholar

    [3] 贾国东. 冰期出露的巽他陆架?: 重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11):1157-1162 doi: 10.11867/j.issn.1001-8166.2017.11.1157

    CrossRef Google Scholar

    JIA Guodong. Exposed Sunda Shelf during the glacial times: An important component of the terrestrial carbon reservoir? [J]. Advances in Earth Science, 2017, 32(11): 1157-1162. doi: 10.11867/j.issn.1001-8166.2017.11.1157

    CrossRef Google Scholar

    [4] Bird M I, Taylor D, Hunt C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland? [J]. Quaternary Science Reviews, 2005, 24(20-21): 2228-2242. doi: 10.1016/j.quascirev.2005.04.004

    CrossRef Google Scholar

    [5] Montenegro A, Eby M, Kaplan J O, et al. Carbon storage on exposed continental shelves during the glacial-interglacial transition [J]. Geophysical Research Letters, 2006, 33(8): L08703.

    Google Scholar

    [6] Anhuf D, Ledru M P, Behling H, et al. Paleo-environmental change in Amazonian and African rainforest during the LGM [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(3-4): 510-527. doi: 10.1016/j.palaeo.2006.01.017

    CrossRef Google Scholar

    [7] Prentice I C, Harrison S P, Bartlein P J. Global vegetation and terrestrial carbon cycle changes after the last ice age [J]. New Phytologist, 2011, 189(4): 988-998. doi: 10.1111/j.1469-8137.2010.03620.x

    CrossRef Google Scholar

    [8] Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia[C]//Tropical Forests and Climate. Dordrecht: Springer Netherlands, 1991: 53-61.

    Google Scholar

    [9] Wurster C M, Bird M I, Bull I D, et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15508-15511. doi: 10.1073/pnas.1005507107

    CrossRef Google Scholar

    [10] O’Leary M H. Carbon isotope fractionation in plants [J]. Phytochemistry, 1981, 20(4): 553-567. doi: 10.1016/0031-9422(81)85134-5

    CrossRef Google Scholar

    [11] Dubois N, Oppo D W, Galy V V, et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25, 000 years [J]. Nature Geoscience, 2014, 7(7): 513-517. doi: 10.1038/ngeo2182

    CrossRef Google Scholar

    [12] Waliser D E, Gautier C. A satellite-derived climatology of the ITCZ [J]. Journal of Climate, 1993, 6(11): 2162-2174. doi: 10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2

    CrossRef Google Scholar

    [13] Yang S, Zhang T T, Li Z N, et al. Climate variability over the maritime continent and its role in global climate variation: a review [J]. Journal of Meteorological Research, 2019, 33(6): 993-1015. doi: 10.1007/s13351-019-9025-x

    CrossRef Google Scholar

    [14] Wurster C M, Rifai H, Zhou B, et al. Savanna in equatorial Borneo during the late Pleistocene [J]. Scientific Reports, 2019, 9(1): 6392. doi: 10.1038/s41598-019-42670-4

    CrossRef Google Scholar

    [15] Konecky B, Russell J, Bijaksana S. Glacial aridity in central Indonesia coeval with intensified monsoon circulation [J]. Earth and Planetary Science Letters, 2016, 437: 15-24. doi: 10.1016/j.jpgl.2015.12.037

    CrossRef Google Scholar

    [16] Wicaksono S A, Russell J M, Holbourn A, et al. Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2017, 157: 152-163. doi: 10.1016/j.quascirev.2016.12.006

    CrossRef Google Scholar

    [17] Aldrian E, Dwi Susanto R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature [J]. International Journal of Climatology, 2003, 23(12): 1435-1452. doi: 10.1002/joc.950

    CrossRef Google Scholar

    [18] Chang C P, Wang Z, Ju J H, et al. On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter [J]. Journal of Climate, 2004, 17(3): 665-672. doi: 10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2

    CrossRef Google Scholar

    [19] Yang Z B, Li T G, Lei Y L, et al. Vegetation evolution-based hydrological climate history since LGM in southern South China Sea [J]. Marine Micropaleontology, 2020, 156: 101837. doi: 10.1016/j.marmicro.2020.101837

    CrossRef Google Scholar

    [20] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate [J]. Nature Geoscience, 2013, 6(6): 485-491. doi: 10.1038/ngeo1823

    CrossRef Google Scholar

    [21] Gibbons F T, Oppo D W, Mohtadi M, et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans [J]. Earth and Planetary Science Letters, 2014, 387: 240-251. doi: 10.1016/j.jpgl.2013.11.032

    CrossRef Google Scholar

    [22] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise [J]. Nature Geoscience, 2009, 2(9): 636-639. doi: 10.1038/ngeo605

    CrossRef Google Scholar

    [23] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164

    CrossRef Google Scholar

    [24] Tierney J E, Oppo D W, Rosenthal Y, et al. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography, 2010, 25(1): PA1102.

    Google Scholar

    [25] Kershaw A P, Van Der Kaars S, Flenley J R. The quaternary history of far Eastern rainforests[C]//Tropical Rainforest Responses to Climatic Change. Berlin, Heidelberg: Springer, 2011: 85-123.

    Google Scholar

    [26] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 503-537. doi: 10.1146/annurev.pp.40.060189.002443

    CrossRef Google Scholar

    [27] Collins J A, Schefuß E, Govin A, et al. Insolation and glacial-interglacial control on southwestern African hydroclimate over the past 140000 years [J]. Earth and Planetary Science Letters, 2014, 398: 1-10. doi: 10.1016/j.jpgl.2014.04.034

    CrossRef Google Scholar

    [28] Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology [J]. Earth and Planetary Science Letters, 2008, 275(1-2): 1-16. doi: 10.1016/j.jpgl.2008.07.012

    CrossRef Google Scholar

    [29] Gratton C, Forbes A E. Changes in δ13C stable isotopes in multiple tissues of insect predators fed isotopically distinct prey [J]. Oecologia, 2006, 147(4): 615-624. doi: 10.1007/s00442-005-0322-y

    CrossRef Google Scholar

    [30] Wurster C M, McFarlane D A, Bird M I. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States [J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3302-3310. doi: 10.1016/j.gca.2007.05.002

    CrossRef Google Scholar

    [31] Zahn A, Haselbach H, Güttinger R. Foraging activity of central European Myotis myotis in a landscape dominated by spruce monocultures [J]. Mammalian Biology, 2005, 70(5): 265-270. doi: 10.1016/j.mambio.2004.11.020

    CrossRef Google Scholar

    [32] Wurster C M, Bird M I, Bull I D, et al. A protocol for radiocarbon dating tropical subfossil cave guano [J]. Radiocarbon, 2009, 51(3): 977-986. doi: 10.1017/S0033822200034056

    CrossRef Google Scholar

    [33] Wurster C M, Rifai H, Haig J, et al. Stable isotope composition of cave guano from eastern Borneo reveals tropical environments over the past 15, 000 cal yr BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473: 73-81. doi: 10.1016/j.palaeo.2017.02.029

    CrossRef Google Scholar

    [34] Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322

    CrossRef Google Scholar

    [35] Vogts A, Schefuß E, Badewien T, et al. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions [J]. Organic Geochemistry, 2012, 47: 109-119. doi: 10.1016/j.orggeochem.2012.03.011

    CrossRef Google Scholar

    [36] Chikaraishi Y, Naraoka H, Poulson S R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants [J]. Phytochemistry, 2004, 65(10): 1369-1381. doi: 10.1016/j.phytochem.2004.03.036

    CrossRef Google Scholar

    [37] Niedermeyer E M, Sessions A L, Feakins S J, et al. Hydroclimate of the western Indo-Pacific Warm Pool during the past 24, 000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9402-9406. doi: 10.1073/pnas.1323585111

    CrossRef Google Scholar

    [38] Hu J F, Peng P A, Fang D Y, et al. No aridity in Sunda Land during the Last Glaciation: Evidence from molecular-isotopic stratigraphy of long-chain n-alkanes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8

    CrossRef Google Scholar

    [39] 崔子恒. 末次冰期以来巽他陆架东北部地区古环境与古植被变化[D]. 同济大学硕士学位论文, 2020.

    Google Scholar

    CUI Ziheng. Paleo-vegetation and Paleo-environment in the Northeast of the Sunda Shelf since the Last Glacial Period[D]. Master Dissertation of Tongji University, 2020.

    Google Scholar

    [40] 杨莹. 末次冰期以来巽他陆架植被与水文演化: 南海南部沉积物生物标志物记录[D]. 同济大学硕士学位论文, 2020.

    Google Scholar

    YANG Ying. Vegetation and hydrological evolution on the Sunda Shelf since the last glaciation: sedimentary biomarker records from the Southern South China Sea[D]. Master Dissertation of Tongji University, 2020.

    Google Scholar

    [41] Wicaksono S A, Russell J M, Bijaksana S. Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi, Indonesia, since 53, 000 yr BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 47-56. doi: 10.1016/j.palaeo.2015.04.016

    CrossRef Google Scholar

    [42] Russell J M, Vogel H, Konecky B L, et al. Glacial forcing of central Indonesian hydroclimate since 60, 000 y B. P [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5100-5105. doi: 10.1073/pnas.1402373111

    CrossRef Google Scholar

    [43] Hope G. Environmental change in the late Pleistocene and later Holocene at wanda site, soroako, South Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 129-145. doi: 10.1016/S0031-0182(01)00243-7

    CrossRef Google Scholar

    [44] Ruan Y M, Mohtadi M, Van Der Kaars S, et al. Differential hydro-climatic evolution of East Javanese ecosystems over the past 22, 000 years [J]. Quaternary Science Reviews, 2019, 218: 49-60. doi: 10.1016/j.quascirev.2019.06.015

    CrossRef Google Scholar

    [45] 孙湘君, 罗运利, 陈怀成. 中国第四纪深海孢粉研究进展[J]. 科学通报, 2003, 48(20):2155-2164 doi: 10.1007/BF03182842

    CrossRef Google Scholar

    SUN Xiangjun, LUO Yunli, CHEN Huaicheng. Deep-sea pollen research in China [J]. Chinese Science Bulletin, 2003, 48(20): 2155-2164. doi: 10.1007/BF03182842

    CrossRef Google Scholar

    [46] 赵辰辰, 王永波, 胥勤勉. 2.5Ma以来中国陆地孢粉记录反映的古气候变化[J]. 海洋地质与第四纪地质, 2020, 40(4):175-191

    Google Scholar

    ZHAO Chenchen, WANG Yongbo, XU Qinmian. Climate changes on Chinese continent since 2.5 Ma: Evidence from fossil pollen records [J]. Marine Geology & Quaternary Geology, 2020, 40(4): 175-191.

    Google Scholar

    [47] 戴璐, Yeok F S. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11):1147-1156 doi: 10.11867/j.issn.1001-8166.2017.11.1147

    CrossRef Google Scholar

    DAI Lu, Yeok F S. Was there savanna corridor on the exposed Sunda Shelf during the last glacial period? [J]. Advances in Earth Science, 2017, 32(11): 1147-1156. doi: 10.11867/j.issn.1001-8166.2017.11.1147

    CrossRef Google Scholar

    [48] Wang X M, Sun X J, Wang P X, et al. Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008

    CrossRef Google Scholar

    [49] Sun X J, Li X, Luo Y L. Vegetation and climate on the Sunda shelf of the South China Sea during the last glaciation-Pollen results from station 17962 [J]. Acta Botanica Sinica, 2002, 44(6): 746-752.

    Google Scholar

    [50] 李逊, 孙湘君. 南海南部末次冰期以来的孢粉记录及其气候意义[J]. 第四纪研究, 1999(6):526-535 doi: 10.3321/j.issn:1001-7410.1999.06.005

    CrossRef Google Scholar

    LI Xun, SUN Xiangjun. Palynological records since Last Glacial Maximum from a deep sea core in Southern South China Sea [J]. Quaternary Sciences, 1999(6): 526-535. doi: 10.3321/j.issn:1001-7410.1999.06.005

    CrossRef Google Scholar

    [51] 王晓梅. 巽他陆架近四万年以来的古植被及其古环境意义[D]. 同济大学博士学位论文, 2006.

    Google Scholar

    WANG Xiaomei. Paleovegetation on the Sunda Shelf over the Last 40 ka and Its Paleoenvironmental Significance[D]. Doctor Dissertation of Tongji University, 2006.

    Google Scholar

    [52] Luo C X, Haberle S, Zheng Z, et al. Environmental changes in the north-east Sunda region over the last 40 000 years [J]. Journal of Quaternary Science, 2019, 34(3): 245-257. doi: 10.1002/jqs.3093

    CrossRef Google Scholar

    [53] 杨再宝. 南海南部孢粉分布特征及其对周边地区4万年来气候环境演化历史的指示[D]. 中国科学院大学博士学位论文, 2019.

    Google Scholar

    YANG Zaibao. Distribution characteristics of sporopollen in the Southern South China Sea and its implications for regional climate and environmental evolution since 40 ka[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2019.

    Google Scholar

    [54] Hunt C O, Gilbertson D D, Rushworth G. A 50, 000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo [J]. Quaternary Science Reviews, 2012, 37: 61-80. doi: 10.1016/j.quascirev.2012.01.014

    CrossRef Google Scholar

    [55] Jones S E, Hunt C O, Reimer P J. A Late Pleistocene record of climate and environmental change from the northern and southern Kelabit Highlands of Sarawak, Malaysian Borneo [J]. Journal of Quaternary Science, 2014, 29(2): 105-122. doi: 10.1002/jqs.2682

    CrossRef Google Scholar

    [56] Anshari G, Kershaw A P, Van Der Kaars S, et al. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia [J]. Journal of Quaternary Science, 2004, 19(7): 637-655. doi: 10.1002/jqs.879

    CrossRef Google Scholar

    [57] Maloney B K, McCormac F G. A 30, 000-year pollen and radiocarbon record from highland sumatra as evidence for climate change [J]. Radiocarbon, 1995, 37(2): 181-190. doi: 10.1017/S0033822200030629

    CrossRef Google Scholar

    [58] Maloney B K. Pollen analytical evidence for early forest clearance in North Sumatra [J]. Nature, 1980, 287(5780): 324-326. doi: 10.1038/287324a0

    CrossRef Google Scholar

    [59] Taylor D, Yen O H, Sanderson P G, et al. Late quaternary peat formation and vegetation dynamics in a lowland tropical swamp; Nee Soon, Singapore [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 269-287. doi: 10.1016/S0031-0182(01)00249-8

    CrossRef Google Scholar

    [60] White J C, Penny D, Kealhofer L, et al. Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand [J]. Quaternary International, 2004, 113(1): 111-132. doi: 10.1016/j.quaint.2003.09.001

    CrossRef Google Scholar

    [61] Bian Y P, Jian Z M, Weng C Y, et al. A palynological and palaeoclimatological record from the southern Philippines since the Last Glacial Maximum [J]. Chinese Science Bulletin, 2011, 56(22): 2359-2365. doi: 10.1007/s11434-011-4573-1

    CrossRef Google Scholar

    [62] Flenley J R. Tropical forests under the climates of the last 30, 000 years [J]. Climatic Change, 1998, 39(2-3): 177-197.

    Google Scholar

    [63] Dam R A C, Fluin J, Suparan P, et al. Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33, 000 yr B. P [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 147-183. doi: 10.1016/S0031-0182(01)00244-9

    CrossRef Google Scholar

    [64] Van Der Kaars S, Bassinot F, De Deckker P, et al. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83, 000years: The record from marine core BAR94-42 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1-2): 52-78. doi: 10.1016/j.palaeo.2010.06.015

    CrossRef Google Scholar

    [65] Van Der Kaars S, Penny D, Tibby J, et al. Late quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 185-212. doi: 10.1016/S0031-0182(01)00245-0

    CrossRef Google Scholar

    [66] Van Der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years [J]. Quaternary International, 1997, 37: 67-71. doi: 10.1016/1040-6182(96)00002-X

    CrossRef Google Scholar

    [67] Wang X, Van Der Kaars S, Kershaw P, et al. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 147(3-4): 241-256. doi: 10.1016/S0031-0182(98)00169-2

    CrossRef Google Scholar

    [68] Van Der Kaars S, Wang X, Kershaw P, et al. A late quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 155(1-2): 135-153. doi: 10.1016/S0031-0182(99)00098-X

    CrossRef Google Scholar

    [69] Raes N, Cannon C H, Hijmans R J, et al. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16790-16795. doi: 10.1073/pnas.1403053111

    CrossRef Google Scholar

    [70] Ratnam J, Tomlinson K W, Rasquinha D N, et al. Savannahs of Asia: Antiquity, biogeography, and an uncertain future [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1703): 20150305. doi: 10.1098/rstb.2015.0305

    CrossRef Google Scholar

    [71] Denton G H, Alley R B, Comer G C, et al. The role of seasonality in abrupt climate change [J]. Quaternary Science Reviews, 2005, 24(10-11): 1159-1182. doi: 10.1016/j.quascirev.2004.12.002

    CrossRef Google Scholar

    [72] Shakun J D, Clark P U, He F, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation [J]. Nature, 2012, 484(7392): 49-54. doi: 10.1038/nature10915

    CrossRef Google Scholar

    [73] Denniston R F, Wyrwoll K H, Asmerom Y, et al. North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period [J]. Quaternary Science Reviews, 2013, 72: 159-168. doi: 10.1016/j.quascirev.2013.04.012

    CrossRef Google Scholar

    [74] Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology [J]. Earth and Planetary Science Letters, 2013, 369-370: 108-119. doi: 10.1016/j.jpgl.2013.03.014

    CrossRef Google Scholar

    [75] Sadekov A Y, Ganeshram R, Pichevin L, et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state [J]. Nature Communications, 2013, 4(1): 2692. doi: 10.1038/ncomms3692

    CrossRef Google Scholar

    [76] De Deckker P, Tapper N J, Van Der Kaars S. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum [J]. Global and Planetary Change, 2003, 35(1-2): 25-35. doi: 10.1016/S0921-8181(02)00089-9

    CrossRef Google Scholar

    [77] Sun X J, Li X, Luo Y L, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(3619) PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint