2021 Vol. 41, No. 4
Article Contents

FANG Xiaorong, HU Ningjing, DOU Ruxi, ZHANG Ying, ZHANG Hui, LIU Jihua. Provenance evolution since Middle Holocene of the sediments on the East Siberian shelf: Evidence from elemental geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 60-73. doi: 10.16562/j.cnki.0256-1492.2020122701
Citation: FANG Xiaorong, HU Ningjing, DOU Ruxi, ZHANG Ying, ZHANG Hui, LIU Jihua. Provenance evolution since Middle Holocene of the sediments on the East Siberian shelf: Evidence from elemental geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 60-73. doi: 10.16562/j.cnki.0256-1492.2020122701

Provenance evolution since Middle Holocene of the sediments on the East Siberian shelf: Evidence from elemental geochemistry

More Information
  • The Arctic region is very sensitive to global climate change. It is a key area in the world to the study of paleoenvironmental and paleoclimatic changes. The East Siberian Sea (ESS) is one of the important marginal seas in the Arctic region. Study of the sediment provenance of the ESS shelf is essential to the overall understanding of the Arctic environmental and climatic changes. Based on the analyzing results of the major, trace and rare earth elements from the core of LV77-36, this paper described the change patterns of concerned indices with time, discussed the variation of detrital components in the ESS sediments since Middle Holocene, and finally, revealed the response of provenance evolution to paleoenvironment changes. The results show that since Middle Holocene, the sediments of the core LV77-36 are mainly coming from the suspended materials carried by the Lena, Indigirka, Yana and Mackenzie rivers, in addition to the coastal erosive materials from the Siberian platform and New Siberian Islands. According to the Comparison with other paleoclimatic parameters, it is found that the changes of sea ice and ocean currents have important effects on the dispersion and deposition of sediments on the East Siberia shelf. In Late Holocene, due to the increase in sea ice in the Chukchi Sea, the weakening of the Siberian coastal current and the strengthening of the Beaufort circulation, the material contributed by the North American end member increased slightly compared to the Middle Holocene sediments.

  • 加载中
  • [1] 柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1):1-12

    Google Scholar

    KE Changqing, JIN Xin, SHEN Xiaoyi, et al. Comparison of antarctic and arctic seaice variations and their impact factors [J]. Chinese Journal of Polar Research, 2020, 32(1): 1-12.

    Google Scholar

    [2] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synthesis [J]. Global and Planetary Change, 2011, 77(1-2): 85-96. doi: 10.1016/j.gloplacha.2011.03.004

    CrossRef Google Scholar

    [3] Chapman W L, Walsh J E. Recent variations of sea ice and air temperature in high latitudes [J]. Bulletin of the American Meteorological Society, 1993, 74(1): 33-48. doi: 10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2

    CrossRef Google Scholar

    [4] Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean) [J]. Journal of Quaternary Science, 2017, 32(3): 362-379. doi: 10.1002/jqs.2929

    CrossRef Google Scholar

    [5] Frey K E, Moore G W K, Cooper L W, et al. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region [J]. Progress in Oceanography, 2015, 136: 32-49. doi: 10.1016/j.pocean.2015.05.009

    CrossRef Google Scholar

    [6] Shakhova N, Semiletov I, Sergienko V, et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2052): 20140451. doi: 10.1098/rsta.2014.0451

    CrossRef Google Scholar

    [7] Vonk J E, Sánchez-García L, Van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia [J]. Nature, 2012, 489(7414): 137-140. doi: 10.1038/nature11392

    CrossRef Google Scholar

    [8] Bröder L, Andersson A, Tesi T, et al. Quantifying Degradative loss of terrigenous organic carbon in surface sediments across the Laptev and east Siberian sea [J]. Global Biogeochemical Cycles, 2019, 33(1): 85-99. doi: 10.1029/2018GB005967

    CrossRef Google Scholar

    [9] Nikolaeva N A, Derkachev A N, Dudarev O V. Mineral composition of sediments from the Eastern Laptev Sea shelf and East Siberian Sea [J]. Oceanology, 2013, 53(4): 472-480. doi: 10.1134/S0001437013040073

    CrossRef Google Scholar

    [10] Chen M L, Kim J H, Lee Y K, et al. Subsea permafrost as a potential major source of dissolved organic matter to the East Siberian Arctic Shelf [J]. Science of the Total Environment, 2021, 777: 146100. doi: 10.1016/j.scitotenv.2021.146100

    CrossRef Google Scholar

    [11] Guo L D, Semiletov I, Gustafsson Ö, et al. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export [J]. Global Biogeochemical Cycles, 2004, 18(1): GB1036.

    Google Scholar

    [12] Keskitalo K, Tesi T, Bröder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea [J]. Climate of the Past, 2017, 13(9): 1213-1226. doi: 10.5194/cp-13-1213-2017

    CrossRef Google Scholar

    [13] Tesi T, Geibel M C, Pearce C, et al. Carbon geochemistry of plankton-dominated samples in the Laptev and East Siberian shelves: contrasts in suspended particle composition [J]. Ocean Science, 2017, 13(5): 735-748. doi: 10.5194/os-13-735-2017

    CrossRef Google Scholar

    [14] Bauch H A, Kassens H. Arctic Siberian shelf environments—an introduction [J]. Global and Planetary Change, 2005, 48(1-3): 1-8. doi: 10.1016/j.gloplacha.2004.12.003

    CrossRef Google Scholar

    [15] Cronin T M, O'Regan M, Pearce C, et al. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins [J]. Climate of the Past, 2017, 13(9): 1097-1110. doi: 10.5194/cp-13-1097-2017

    CrossRef Google Scholar

    [16] Dudarev O V, Semiletov I P, Charkin A N, et al. Deposition settings on the continental shelf of the East Siberian Sea [J]. Doklady Earth Sciences, 2006, 409(6): 1000-1005.

    Google Scholar

    [17] Joe Y J, Polyak L, Schreck M, et al. Late Quaternary depositional and glacial history of the Arliss Plateau off the East Siberian margin in the western Arctic Ocean [J]. Quaternary Science Reviews, 2020, 228: 106099. doi: 10.1016/j.quascirev.2019.106099

    CrossRef Google Scholar

    [18] Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the East Siberian continental margin [J]. Nature Geoscience, 2013, 6(10): 842-846. doi: 10.1038/ngeo1904

    CrossRef Google Scholar

    [19] Wegner C, Bennett K E, De Vernal A, et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene [J]. Polar Research, 2015, 34(1): 24964. doi: 10.3402/polar.v34.24964

    CrossRef Google Scholar

    [20] Maccali J, Hillaire-Marcel C, Not C. Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions [J]. Polar Research, 2018, 37(1): 1442982. doi: 10.1080/17518369.2018.1442982

    CrossRef Google Scholar

    [21] Rachold V, Grigoriev M N, Are F E, et al. Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas [J]. International Journal of Earth Sciences, 2000, 89(3): 450-460. doi: 10.1007/s005310000113

    CrossRef Google Scholar

    [22] Astakhov A S, Semiletov I P, Sattarova V V, et al. Rare earth elements in the bottom sediments of the east arctic seas of Russia as indicators of Terrigenous input [J]. Doklady Earth Sciences, 2018, 482(2): 1324-1327. doi: 10.1134/S1028334X18100021

    CrossRef Google Scholar

    [23] Astakhov A S, Sattarova V V, Shi X F, et al. Distribution and sources of rare earth elements in sediments of the Chukchi and East Siberian Seas [J]. Polar Science, 2019, 20: 148-159. doi: 10.1016/j.polar.2019.05.005

    CrossRef Google Scholar

    [24] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167 doi: 10.3321/j.issn:1001-8166.1999.02.010

    CrossRef Google Scholar

    YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Acta Electronica Sinica, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010

    CrossRef Google Scholar

    [25] Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions [J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002

    CrossRef Google Scholar

    [26] Gordeev V V, Martin J M, Sidorov I S, et al. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean [J]. American Journal of Science, 1996, 296(6): 664-691. doi: 10.2475/ajs.296.6.664

    CrossRef Google Scholar

    [27] Gordeev V V. Fluvial sediment flux to the Arctic Ocean [J]. Geomorphology, 2006, 80(1-2): 94-104. doi: 10.1016/j.geomorph.2005.09.008

    CrossRef Google Scholar

    [28] HOlmes R M, McClelland J M, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 45-1-45-14.

    Google Scholar

    [29] Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans [J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.

    Google Scholar

    [30] Sharma M, Basu A R, Nesterenko G V. Temporal Sr-, Nd- and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics [J]. Earth and Planetary Science Letters, 1992, 113(3): 365-381. doi: 10.1016/0012-821X(92)90139-M

    CrossRef Google Scholar

    [31] Huh Y, Panteleyev G, Babich D, et al. The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2053-2075. doi: 10.1016/S0016-7037(98)00127-6

    CrossRef Google Scholar

    [32] Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting [J]. Continental Shelf Research, 2003, 23(11-13): 1175-1200. doi: 10.1016/S0278-4343(03)00091-8

    CrossRef Google Scholar

    [33] Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge [J]. Quaternary Science Reviews, 2014, 92: 140-154. doi: 10.1016/j.quascirev.2013.12.011

    CrossRef Google Scholar

    [34] Fujita K, Stone D B, Layer P W, et al. Cooperative program helps decipher tectonics of northeastern Russia [J]. Eos, Transactions American Geophysical Union, 1997, 78(24): 245-253.

    Google Scholar

    [35] Harbert W, Frei L, Jarrard R, et al. Palaeomagnetic and plate-tectonic constrains on the evolution of the Alaskan–eastern Siberian Arctic[M]//Grantz A, Johnson G L, Sweeney J F. The Arctic Ocean Region. The Geology of North America, L. Colorado: Geological Society of America, 1990: 567-592.

    Google Scholar

    [36] Nghiem S V, Rigor I G, Perovich D K, et al. Rapid reduction of Arctic perennial sea ice [J]. Geophysical Research Letters, 2007, 34(19): L19504. doi: 10.1029/2007GL031138

    CrossRef Google Scholar

    [37] Johannessen O M, Bengtsson L, Miles M W, et al. Arctic climate change: observed and modelled temperature and sea-ice variability [J]. Tellus A: Dynamic Meteorology and Oceanography, 2004, 56(4): 328-341. doi: 10.3402/tellusa.v56i4.14418

    CrossRef Google Scholar

    [38] Kolatschek J, Eicken H, Alexandrov V Y, et al. The sea-ice cover of the Arctic Ocean and the Eurasian marginal seas: A brief overview of present day patterns and variability[C]//Berichte zur Polarforschung 212, Alfred-Wegener Institut für Polar und Meeresforschung. Bremerhaven, Germany: A-W-I, Columbusstrasse, 1996: 1-324.

    Google Scholar

    [39] Razumov S O. Permafrost as a factor of the dynamics of the coastal zone of the Russian East Arctic Seas [J]. Oceanology, 2010, 50(2): 262-267. doi: 10.1134/S0001437010020116

    CrossRef Google Scholar

    [40] Spielhagen R F, Bonani G, Eisenhauer A, et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets [J]. Geology, 1997, 25(9): 783-786. doi: 10.1130/0091-7613(1997)025<0783:AOEFLQ>2.3.CO;2

    CrossRef Google Scholar

    [41] Jones E P, Anderson L G, Swift J H. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: implications for circulation [J]. Geophysical Research Letters, 1998, 25(6): 765-768. doi: 10.1029/98GL00464

    CrossRef Google Scholar

    [42] Darby D A, Bischof J F. A Holocene record of changing arctic ocean ice drift analogous to the effects of the arctic oscillation [J]. Paleoceanography, 2004, 19(1): 1-9.

    Google Scholar

    [43] Darby D A, Ortiz J D, Grosch C E, et al. 1, 500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift [J]. Nature Geoscience, 2012, 5(12): 897-900. doi: 10.1038/ngeo1629

    CrossRef Google Scholar

    [44] Romanovskii N N, Hubberten H W, Gavrilov A V, et al. Permafrost of the east Siberian Arctic shelf and coastal lowlands [J]. Quaternary Science Reviews, 2004, 23(11-13): 1359-1369. doi: 10.1016/j.quascirev.2003.12.014

    CrossRef Google Scholar

    [45] Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis [J]. Chemical Geology, 2002, 187(3-4): 179-199. doi: 10.1016/S0009-2541(01)00416-8

    CrossRef Google Scholar

    [46] Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments [J]. Chemical Geology, 2007, 242(3-4): 351-370. doi: 10.1016/j.chemgeo.2007.03.021

    CrossRef Google Scholar

    [47] Byrne R H, Sholkovitz E R. Marine chemistry and geochemistry of the lanthanides [J]. Handbook on the Physics and Chemistry of Rare Earths, 1996, 23: 497-593.

    Google Scholar

    [48] Kassens H, Bauch H A, Dmitrenko I A, et al. Land-Ocean Systems in the Siberian Arctic: Dynamics and History[M]. Berlin Heidelberg: Springer, 1999: 199-222.

    Google Scholar

    [49] Gaillardet J, Dupré B, Allègre C J. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? [J]. Geochimica et Cosmochimica Acta, 1999, 63(23-24): 4037-4051. doi: 10.1016/S0016-7037(99)00307-5

    CrossRef Google Scholar

    [50] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited [J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38. doi: 10.1016/j.gca.2015.08.001

    CrossRef Google Scholar

    [51] Sun X Q, Liu S F, Li J R, et al. Major and trace element compositions of surface sediments from the lower Bengal Fan: Implications for provenance discrimination and sedimentary environment [J]. Journal of Asian Earth Sciences, 2019, 184: 104000. doi: 10.1016/j.jseaes.2019.104000

    CrossRef Google Scholar

    [52] Taylor S R, McLennan S M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 381-399.

    Google Scholar

    [53] 霍文冕, 曾宪章, 田伟之, 等. 北极楚科奇海近代沉积物稀土元素地球化学特征初探[J]. 极地研究, 2003, 15(1):21-27

    Google Scholar

    HUO Wenmian, ZENG Xianzhang, TIAN Weizhi, et al. The Rees geochemistry of Chukchi sea sediment core [J]. Advances in Polar Science, 2003, 15(1): 21-27.

    Google Scholar

    [54] Dong L S, Polyak L, Liu Y G, et al. Isotopic fingerprints of ice‐rafted debris offer new constraints on middle to late quaternary arctic circulation and glacial history [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(8): e2020GC009019.

    Google Scholar

    [55] 董林森, 石学法, 刘焱光, 等. 北冰洋西部表层沉积物矿物学特征及其物质来源[J]. 极地研究, 2014, 26(1):58-70

    Google Scholar

    DONG Linsen, SHI Xuefa, LIU Yanguang, et al. Minerals in surface sediments in the western arctic ocean and their sources [J]. Chinese Journal of Polar Research, 2014, 26(1): 58-70.

    Google Scholar

    [56] Stein R, Macdonald R W. The organic carbon cycle in the Arctic Ocean[M]. Berlin Heidelberg: Springer, 2004: 315-322.

    Google Scholar

    [57] Silverberg N. Sedimentology of the surface sediments of the east siberian and laptev seas[D]. Doctoral Dissertation of University of Washington, 1972.

    Google Scholar

    [58] Kalinenko V V. Clay minerals in sediments of the arctic seas [J]. Lithology and Mineral Resources, 2001, 36(4): 362-372. doi: 10.1023/A:1010414305264

    CrossRef Google Scholar

    [59] 李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3):76-89

    Google Scholar

    LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian Arctic Shelf: evidence from clay minerals and chemical elements [J]. Acta Oceanologica Sinica, 2021, 43(3): 76-89.

    Google Scholar

    [60] Macdonald R W, Kuzyk Z Z A, Johannessen S C. The vulnerability of Arctic shelf sediments to climate change [J]. Environmental Reviews, 2015, 23(4): 461-479. doi: 10.1139/er-2015-0040

    CrossRef Google Scholar

    [61] Pisias N G, Murray R W, Scudder R P. Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: General principles and specific MATLAB scripts [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4015-4020. doi: 10.1002/ggge.20247

    CrossRef Google Scholar

    [62] Anderson C H, Murray R W, Dunlea A G, et al. Aeolian delivery to Ulleung basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma [J]. Geological Magazine, 2019, 157(5): 806-817.

    Google Scholar

    [63] Anderson C H, Murray R W, Dunlea A G, et al. Climatically driven changes in the supply of Terrigenous sediment to the East China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2463-2477. doi: 10.1029/2017GC007339

    CrossRef Google Scholar

    [64] Dunlea A G, Murray R W, Ramos D P S, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering [J]. Nature Communications, 2017, 8(1): 844. doi: 10.1038/s41467-017-00853-5

    CrossRef Google Scholar

    [65] Laskar J P, Robutel F, Joutel M, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.

    Google Scholar

    [66] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack [J]. Climate of the Past, 2016, 12(4): 1079-1092. doi: 10.5194/cp-12-1079-2016

    CrossRef Google Scholar

    [67] North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805

    CrossRef Google Scholar

    [68] Rudenko О, Taldenkova Е, Ovsepyan Y, et al. A multiproxy-based reconstruction of the mid- to late Holocene paleoenvironment in the Laptev Sea off the Lena River Delta (Siberian Arctic) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109502. doi: 10.1016/j.palaeo.2019.109502

    CrossRef Google Scholar

    [69] Bauch H A, Mueller-Lupp T, Taldenkova E, et al. Chronology of the Holocene transgression at the North Siberian margin [J]. Global and Planetary Change, 2001, 31(1-4): 125-139. doi: 10.1016/S0921-8181(01)00116-3

    CrossRef Google Scholar

    [70] Klemann V, Heim B, Bauch H A, et al. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the last glacial maximum [J]. Arktos, 2015, 1(1): 1. doi: 10.1007/s41063-015-0004-x

    CrossRef Google Scholar

    [71] Hörner T, Stein R, Fahl K, et al. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)-A high-resolution biomarker study [J]. Quaternary Science Reviews, 2016, 143: 133-149. doi: 10.1016/j.quascirev.2016.04.011

    CrossRef Google Scholar

    [72] Wagner A, Lohmann G, Prange M. Arctic river discharge trends since 7ka BP [J]. Global and Planetary Change, 2011, 79(1-2): 48-60. doi: 10.1016/j.gloplacha.2011.07.006

    CrossRef Google Scholar

    [73] Yamamoto M, Nam S I, Polyak L, et al. Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea [J]. Climate of the Past, 2017, 13(9): 1111-1127. doi: 10.5194/cp-13-1111-2017

    CrossRef Google Scholar

    [74] Wanner H, Beer J, Bütikofer J, et al. Mid- to Late Holocene climate change: an overview [J]. Quaternary Science Reviews, 2008, 27(19-20): 1791-1828. doi: 10.1016/j.quascirev.2008.06.013

    CrossRef Google Scholar

    [75] Biskaborn B K, Subetto D A, Savelieva L A, et al. Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability [J]. Quaternary Science Reviews, 2016, 147: 406-421. doi: 10.1016/j.quascirev.2015.08.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(2320) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint