Citation: | SHAO Xiao-yu, ZHANG Heng, ZHANG Shu-min, HAN Ying, ZHAN Chun-rui, YI Ming, JIANG Long-fa. The Control Mode of Extraction Temperature for Water-soluble Fluorine in Soils Measurement by Selective Electrode Method[J]. Rock and Mineral Analysis, 2021, 40(2): 316-323. doi: 10.15898/j.cnki.11-2131/td.202005120069 |
The water-soluble fluoride in soil was pretreated by ultrasonic extraction and determined by ion selective electrode. The thermal effect of ultrasonic cavitation can cause the temperature of the extract to rise, and the test result may be unstable, and it cannot truthfully reflect the water-soluble fluorine content in the soil, which causes problems for the monitoring of fluorine in the soil environment. Therefore, how to effectively control the extraction temperature is the focus of this study.
To select the optimal temperature control method, verify the accuracy of the results, and preliminarily discuss the inevitability of temperature control.
In order to select the optimal temperature control method, the temperature change of the extraction liquid during the extraction using four temperature control methods was recorded: direct ultrasound, adding ice pack, adding ice water and cooling circulating water. In order to verify its reasonableness and validity, the applicable and representative soil active state component analysis standard material was selected as the experimental sample to determine the soil water-soluble fluorine content. To investigate the effect of temperature on the amount of water-soluble fluoride extracted from soil, the pH value of the extracted liquid was determined during the extraction process.
The results showed that the cooling circulating water temperature control method could effectively control the extraction temperature within 25±2℃. The relative error (8.9%) was significantly less than that of direct ultrasound method (14.1%). The pH value of the extract liquid did not change significantly, and the determination results were stable and reliable.
The temperature control method by cooling circulating water has the advantages of low cost, simple operation, accurate and reliable results, suitable for batch sample treatment, and can be widely used in soil environmental fluorine monitoring.
[1] | Zhang H M, Su B Y, Liu P H, et al. Experimental study of fluorine transport rules in unsaturated stratified soil[J]. Journal of China University of Mining & Technology, 2007, 17(3): 382-386. |
[2] | Li Y Y, Wang S L, Sun H L, et al. Immobilization of fluoride in the sediment of mine drainage stream using loess, northwest China[J]. Environmental Science and Pollution Research, 2020, 27: 6950-6959. doi: 10.1007/s11356-019-07433-8 |
[3] | 崔俊学. 广东某地潮土和水稻土中氟形态转化及吸附研究[D]. 成都: 成都理工大学, 2010. Cui J X. Study on species transformation and adsorption of fluorine in fluro-aquic soil and paddy soil of the Guangdong[D]. Chengdu: Chengdu University of Technology, 2010. |
[4] | 王凌霞. 茶园土壤氟的形态分布特征及降低水溶态氟措施研究[D]. 武汉: 华中农业大学, 2011. Wang L X. Species of fluorine in tea garden soils and methodology of reducing soil water soluble fluorine content[D]. Wuhan: Huazhong Agricultural University, 2011. |
[5] | 桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010 Gui J Y, Han Z T, Zhang X Y, et al. Speciation analysis of fluorine in soil samples[J]. Rock and Mineral Analysis, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010 |
[6] | 袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20. Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminate soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20. |
[7] | 李静, 谢正苗, 徐建明, 等. 我国氟的土壤健康质量指标及评价方法的初步探讨[J]. 浙江大学学报, 2005, 31(5): 593-597. Li J, Xie Z M, Xu J M, et al. Preliminary study on guideline on soil health quality index of fluorine and method of its evaluation in China[J]. Journal of Zhejiang University, 2005, 31(5): 593-597. |
[8] | Li Y P, Wang S L, Nan Z R, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China[J]. Science of the Total Environment, 2019, 663: 307-314. doi: 10.1016/j.scitotenv.2019.01.257 |
[9] | 梁秀娟, 方樟, 季超, 等. 高氟湖库底泥中氟的存在形态分析[J]. 吉林大学学报(地球科学版), 2010, 40(3): 651-656. Liang X J, Fang Z, Ji C, et al. Analysis on the existing forms of fluorine in the bottom mud of high-fluorine lakes and reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3): 651-656. |
[10] | 王恒, 石慧, 徐师, 等. 超声提取-离子色谱法测定银精矿中水溶性氟[J]. 冶金分析, 2019, 39(4): 60-64. Wang H, Shi H, Xu S, et al. Determination of water-soluble fluoride in silver concentrate by ion chromatography with ultrasonic extraction[J]. Metallurgical Analysis, 2019, 39(4): 60-64. |
[11] | 胡松青, 李琳, 陈玲, 等. 功率超声作用下溶液温度变化的数学模拟[J]. 华南理工大学学报(自然科学版), 2007, 35(4): 58-61. doi: 10.3321/j.issn:1000-565X.2007.04.013 Hu S Q, Li L, Chen L, et al. Mathematical simulation of temperature variation of solution irradiated by power ultrasound[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(4): 58-61. doi: 10.3321/j.issn:1000-565X.2007.04.013 |
[12] | Mohamed E G, Jamal F. Thermodynamic properties and solubility of potassium fluoride in aqueous solutions at various temperatures[J]. Journal of Fluorine Chemistry, 2020, 235: 1-5. |
[13] | Lippert F, Martinez-Mier E A, Soto-Rojas A E. Effects of fluoride concentration and temperature of milk on caries lesion rehardening[J]. Journal of Dentistry, 2012, 40: 810-813. doi: 10.1016/j.jdent.2012.06.001 |
[14] | 周艺, 陈新, 李程, 等. 去离子水浸提土壤中水溶性氟最佳条件的研究[J]. 中国卫生检验杂志, 2010, 20(8): 2073-2074, 2083. Zhou Y, Chen X, Li C, et al. Study on optimized extracting conditions of water-soluble fluorine in soil by water[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(8): 2073-2074, 2083. |
[15] | 许建林. 利用超声波测量土壤团聚体稳定性的关键技术研究[D]. 杨凌: 西北农林科技大学, 2015. Xu J L. Key technological study on measuring soil aggregate stability using ultrasonic systems[D]. Yangling: Northwest A & F University, 2015. |
[16] | 刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004 Liu M, Gu T X, Cheng Z Z, et al. The reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004 |
[17] | 蒋倩, 韩勇, 孙晓丽, 等. 酸性土壤水溶性氟浸提方法的研究[J]. 土壤, 2012, 44(1): 140-143. Jiang Q, Han Y, Sun X L, et al. Study on the extraction method for water-extracted fluorine in acid soils[J]. Soils, 2012, 44(1): 140-143. |
[18] | 查立新, 马玲, 刘文长, 等. 振荡提取和超声提取用于土壤样品中元素形态分析[J]. 岩矿测试, 2011, 30(4): 393-399. doi: 10.3969/j.issn.0254-5357.2011.04.003 Zha L X, Ma L, Liu W Z, et al. Morphological analysis of elements in soils using mechanical shaking extraction and ultrasonic vibration extraction[J]. Rock and Mineral Analysis, 2011, 30(4): 393-399. doi: 10.3969/j.issn.0254-5357.2011.04.003 |
[19] | 杜肖, 罗长艳, 王成会. 超声波作用下温度变化对电导率测量的影响[J]. 声学技术, 2017, 36(5): 85-86. Du X, Luo C Y, Wang C H. Influence of temperature variation on conductivity measurement under ultrasonic irradiation[J]. Technical Acoustics, 2017, 36(5): 85-86. |
[20] | 张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系——以河南省永城矿区为例[J]. 地质与资源, 2004, 13(2): 109-111. doi: 10.3969/j.issn.1671-1947.2004.02.007 Zhang W, Fu X F, Zhang F R. The relationship between the high fluorine content of groundwater and the pH value, water temperature and the ratio of (Na++K+)/Ca2+[J]. Geology and Resources, 2004, 13(2): 109-111. doi: 10.3969/j.issn.1671-1947.2004.02.007 |
[21] | 高永慧, 耿小丕. 超声波清洗液温度变化规律的研究[J]. 承德石油高等专科学校学报, 2005, 7(3): 39-41. doi: 10.3969/j.issn.1008-9446.2005.03.010 Gao Y H, Geng X P. Temperature change of ultrasonic wave cleaning fluid[J]. Journal of Chengde Petroleum College, 2005, 7(3): 39-41. doi: 10.3969/j.issn.1008-9446.2005.03.010 |
[22] | 孙娟, 徐荣, 窦艳艳, 等. 超声浸取-离子选择电极法测定土壤中水溶性氟[J]. 环境监控与预警, 2015, 7(5): 18-21. Sun J, Xu L, Dou Y Y, et al. Determination of water-soluble fluoride in soil by ion selective electrode method with ultrasonic extraction[J]. Environmental Monitoring and Forewarning, 2015, 7(5): 18-21. |
[23] | 徐荣, 孙娟, 胡晓乐. 铁和铝离子对土壤水溶性氟化物检测的干扰研究[J]. 环境监控与预警, 2018, 10(3): 21-24. doi: 10.3969/j.issn.1674-6732.2018.03.005 Xu R, Sun J, Hu X L. Research on the interference of iron and aluminum ions to the detection of water soluble fluoride in soil[J]. Environmental Monitoring and Forewarning, 2018, 10(3): 21-24. doi: 10.3969/j.issn.1674-6732.2018.03.005 |
[24] | 洪秀萍, 张引, 梁汉东, 等. 酸性水动态淋滤与静态浸泡土壤中氟的实验研究[J]. 地球与环境, 2015, 43(3): 356-360. Hong X P, Zhang Y, Liang H D, et al. Characteristics of fluorine in soil in both dynamic leaching and static immersion experiments[J]. Earth and Environment, 2015, 43(3): 356-360. |
[25] | Li Y P, Wang S L, Daniel P, et al. Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China[J]. Science of the Total Environment, 2017, 595: 344-351. doi: 10.1016/j.scitotenv.2017.03.288 |
[26] | 李永华, 王五一, 杨林生, 等. 陕南土壤中水溶态硒、氟的含量及其在生态环境的表征[J]. 环境化学, 2005, 24(3): 279-283. doi: 10.3321/j.issn:0254-6108.2005.03.012 Li Y H, Wang W Y, Yang L S, et al. Concentration and environmental significance of water soluble-Se and water soluble-F in soils of South Shaanxi Province[J]. Environmental Chemistry, 2005, 24(3): 279-283. doi: 10.3321/j.issn:0254-6108.2005.03.012 |
[27] | 朱亚鹏, 苏春利, 梁川, 等. 沉积物岩性及水化学性质对水土界面氟迁移行为的影响[J]. 地质科技情报, 2015, 34(5): 160-165. Zhu Y P, Su C L, Liang C, et al. Effects of sediment lithology and groundwater hydrochemical characteristics on fluorine transport at water-soil interface[J]. Geological Science and Technology Information, 2015, 34(5): 160-165. |
[28] | 刘庆, 杨军耀, 王亚琴, 等. 氟在库水与库底沉积物之间的作用过程及机理[J]. 水电能源科学, 2019, 37(1): 57-60. Liu Q, Yang J Y, Wang Y Q, et al. Study on action process and mechanism of fluorine between reservoir water and bottom sediments[J]. Water Resources and Power, 2019, 37(1): 57-60. |
[29] | Shi M J, Gao Z J, Feng J G, et al. Characteristics and effects of fluorine release from shallow high-fluoride soils[J]. Environmental Earth Sciences, 2019, 78: 604. doi: 10.1007/s12665-019-8618-0 |
[30] | 王渊. 粤东某地氟病区氟的来源与迁移转化途径研究[J]. 安全与环境工程, 2019, 26(6): 1-7. Wang Y. Preliminary study on the origin, migration and transformation of fluorine in a fluorine disease area in eastern Guangdong Province[J]. Safety and Environmental Engineering, 2019, 26(6): 1-7. |
Temperature changes of extracted solution by four different temperature control methods
Change of pH value in the extracted solution by different temperature control methods