Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 2
Article Contents

XU Chun-xia, MENG Yu-miao, HUANG Cheng, TANG Chun, ZHENG Fang-wen. Advances in the Study on Mercury Isotope Geochemistry and Its Application in Mineral Deposits[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125
Citation: XU Chun-xia, MENG Yu-miao, HUANG Cheng, TANG Chun, ZHENG Fang-wen. Advances in the Study on Mercury Isotope Geochemistry and Its Application in Mineral Deposits[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

Advances in the Study on Mercury Isotope Geochemistry and Its Application in Mineral Deposits

More Information
  • BACKGROUND

    As an important mineralization element, mercury is widely distributed in different geological bodies and participates in diagenesis and mineralization. With the rapid development of mass spectrometry technology, the field of mercury isotope geochemistry has made remarkable progress. Mercury isotopes have been widely used to trace the biogeochemical processes of the earth's surface and mercury pollution. In recent years, mercury isotopes have been applied to reveal the evolution of planets, identify large igneous provinces in geological history, and trace the sources of mineral deposits.

    OBJECTIVES

    To summarize the mercury isotope compositions of different geological reservoirs (meteorites, terrestrial rocks, coal, sediments, volcanic emissions, epithermal deposits) and investigate the factors controlling the Hg isotope fractionation during ore-forming processes in epithermal deposits.

    METHODS

    Literature reviewed that included published data from this research group and others.

    RESULTS

    Based on previous studies, the isotope composition of mercury in different geological reservoirs was systematically studied. The mercury isotopic composition of geological reservoirs such as meteorites, magmatic rocks, metamorphic rocks, sedimentary rocks, and volcanic gases varied greatly, and some samples also contained non-mass fractionation information. The occurrence and isotopic composition characteristics of low-temperature hydrothermal deposits (modern hot springs, mercury deposits, lead-zinc deposits, antimony deposits, gold deposits) was the focus of this review, and the basic framework of the mercury isotope system construction. Combined with the latest research results, a comprehensive summary of the mercury isotope fractionation mechanism that may have occurred in the mineralization process of the deposit was carried out. The mass fractionation of mercury isotopes in hydrothermal deposits may be caused by fluid volatilization or boiling, condensation, redox reactions, and sulfide precipitation. The non-mass fractionation of mercury isotopes in rocks and ores may be the product of mercury photochemistry during the geological history, or the inheritance of a specific source rock information.

    CONCLUSIONS

    In the future, mercury isotope has great application potential in tracing the ore-forming source of low-temperature hydrothermal deposits and characterizing the evolution of ore-forming fluids.

  • 加载中
  • [1] 冯新斌, 尹润生, 俞奔, 等. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135.

    Google Scholar

    Feng X B, Yin R S, Yu B, et al. A review of Hg isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 124-135.

    Google Scholar

    [2] Chen J B, Hintelmann H, Zheng W, et al. Isotopic evidence for distinct sources of mercury in lake waters and sediments[J]. Chemical Geology, 2016, 426: 33-44. doi: 10.1016/j.chemgeo.2016.01.030

    CrossRef Google Scholar

    [3] Štrok M, Baya P A, Dietrich D, et al. Mercury speciation and mercury stable isotope composition in sediments from the Canadian Arctic Archipelago[J]. Science of the Total Environment, 2019, 671: 655-665. doi: 10.1016/j.scitotenv.2019.03.424

    CrossRef Google Scholar

    [4] Blum J D, Sherman L S, Johnson M W. Mercury isotopes in Earth and environmental sciences[J]. Annual Review of Earth & Planetary Sciences, 2014, 42(1): 249-269.

    Google Scholar

    [5] Perrot V, Pastukhov M V, Epov V N, et al. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia)[J]. Environmental Science & Technology, 2012, 46(11): 5902-5911.

    Google Scholar

    [6] Sherman L S, Blum J D, Franzblau A, et al. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes[J]. Environmental Science & Technology, 2013, 47(7): 3403-3409.

    Google Scholar

    [7] Balogh S J, Tsui M T, Blum J D, et al. Tracking the fate of mercury in the fish and bottom sediments of Minamata Bay, Japan, using stable mercury isotopes[J]. Environmental & Technology, 2015, 49(9): 5399-5406.

    Google Scholar

    [8] Bonsignore M, Tamburrino S, Oliveri E, et al. Tracing mercury pathways in Augusta Bay (southern Italy) by total concentration and isotope determination[J]. Environmental Pollution, 2015, 205: 178-185. doi: 10.1016/j.envpol.2015.05.033

    CrossRef Google Scholar

    [9] Enrico M, Roux G L, Marusczak N, et al. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry dposition[J]. Environmental Science & Technology, 2016, 50(5): 2405-2412.

    Google Scholar

    [10] Du B Y, Li P, Feng X B, et al. Mercury exposure in children of the Wanshan mercury mining area, Guizhou, China[J]. International Journal of Environmental Research & Public Health, 2016, 13(11): 1107.

    Google Scholar

    [11] Meng M, Sun R Y, Liu H W, et al. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling[J]. Journal of Hazardous Materials, 2019, 384: 121379.

    Google Scholar

    [12] Huang J, Kang S C, Yin R S, et al. Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau[J]. Environmental Pollution, 2020, 113432.

    Google Scholar

    [13] Zheng W, Obrist D, Weis D, et al. Mercury isotope compositions across North American forests[J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. doi: 10.1002/2015GB005323

    CrossRef Google Scholar

    [14] Sun R, Jiskra M, Amos H M, et al. Modelling the mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg cycling[J]. Geochimica et Cosmochimica Acta, 2018, 246: 156-173.

    Google Scholar

    [15] Foucher D, Ogrinc N, Hintelmann H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements[J]. Environmental Science & Technology, 2008, 43(1): 33-39.

    Google Scholar

    [16] Feng X B, Foucher D, Hintelmann H, et al. Tracing mercury contamination sources in sediments using mercury isotope compositions[J]. Environmental Science & Technology, 2010, 44(9): 3363-3368.

    Google Scholar

    [17] Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.

    Google Scholar

    [18] Baptista-Salazar C, Hintelmann H, Biester H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science: Processes & Impacts, 2018, 20(4): 621-631.

    Google Scholar

    [19] Schudel G, Kaplan R, Miserendino R A, et al. Mercury isotopic signatures of tailings from artisanal and small-scale gold mining (ASGM) in southwestern Ecuador[J]. Science of The Total Environment, 2019, 686: 301-310. doi: 10.1016/j.scitotenv.2019.06.004

    CrossRef Google Scholar

    [20] Bonsignore M, Manta D S, Barsanti M, et al. Mercury isotope signatures in sediments and marine organisms as tracers of historical industrial pollution[J]. Chemosphere, 2020, 258: 127435. doi: 10.1016/j.chemosphere.2020.127435

    CrossRef Google Scholar

    [21] Rytuba J J. Mercury from mineral deposits and potential environmental impact[J]. Environmental Geology, 2003, 43(3): 326-338. doi: 10.1007/s00254-002-0629-5

    CrossRef Google Scholar

    [22] 胡瑞忠, 付山岭, 肖加飞. 华南大规模低温成矿的主要科学问题[J]. 岩石学报, 2016, 32(11): 3239-3251.

    Google Scholar

    Hu R Z, Fu S L, Xiao J F. Major scientific problems on low-temperature metallogenesis in South China[J]. Acta Petrologica Sinica, 2016, 32(11): 3239-3251.

    Google Scholar

    [23] Hu R Z, Fu S L, Huang Y, et al. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137: 9-34. doi: 10.1016/j.jseaes.2016.10.016

    CrossRef Google Scholar

    [24] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111.

    Google Scholar

    Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111.

    Google Scholar

    [25] 胡瑞忠, 温汉捷, 叶霖, 等. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 2020, 65(33): 3700-3714.

    Google Scholar

    Hu R Z, Wen H J, Ye L, et al. Metallogeny of critical metals in the Southwestern Yangtze Block[J]. Chinese Science Bulletin, 2020, 65(33): 3700-3714.

    Google Scholar

    [26] 温汉捷, 朱传威, 杜胜江, 等. 中国镓锗铊镉资源[J]. 科学通报, 2020, 65(33): 3688-3699.

    Google Scholar

    Wen H J, Zhu C W, Du S J, et al. Metallogeny of critical metals in the southwestern Yangtze Block[J]. Chinese Science Bulletin, 2020, 65(33): 3688-3699.

    Google Scholar

    [27] 胡瑞忠, 陈伟, 毕献武, 等. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约[J]. 地学前缘, 2020, 27(2): 137-150.

    Google Scholar

    Hu R Z, Chen W, Bi X W, et al. Control of the Precambrian basement on the formation of the Mesozoic largescale low-temperature mineralization in the Yangtze Craton[J]. Earth Science Frontiers, 2020, 27(2): 137-150.

    Google Scholar

    [28] Kelley K D, Wilkinson J J, Chapman J B, et al. Zinc isotopes in sphalerite from base metal deposits in the Red Dog District, northern Alaska[J]. Economic Geology, 2009, 104(6): 767-773. doi: 10.2113/gsecongeo.104.6.767

    CrossRef Google Scholar

    [29] Hammerli J, Spandler C, Oliver N H, et al. Zn and Pb mobility during metamorphism of sedimentary rocks and potential implications for some base metal deposits[J]. Mineralium Deposita, 2015, 50: 657-664. doi: 10.1007/s00126-015-0600-5

    CrossRef Google Scholar

    [30] Duan J L, Tang J X, Lin B. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals[J]. Ore Geology Reviews, 2016, 78: 58-68. doi: 10.1016/j.oregeorev.2016.03.019

    CrossRef Google Scholar

    [31] Li M L, Liu S A, Xue C J, et al. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18. doi: 10.1016/j.gca.2019.08.018

    CrossRef Google Scholar

    [32] Zhang H J, Xiao C Y, Wen H J, et al. Homogeneous Zn isotopic compositions in the Maozu Zn-Pb ore deposit in Yunnan Province, southwestern China[J]. Ore Geology Reviews, 2019, 109: 1-10. doi: 10.1016/j.oregeorev.2019.04.004

    CrossRef Google Scholar

    [33] Zhu C W, Wang J, Zhang J W, et al. Isotope geochemistry of Zn, Pb and S in the Ediacaran strata hosted Zn-Pb deposits in southwest China[J]. Ore Geology Reviews, 2020, 117: 103274. doi: 10.1016/j.oregeorev.2019.103274

    CrossRef Google Scholar

    [34] Zhu C W, Wen H J, Zhang Y X, et al. Cadmium isotope fractionation in the fule Mississippi Valley-type deposit, southwest China[J]. Mineralium Deposita, 2017, 52(5): 675-686. doi: 10.1007/s00126-016-0691-7

    CrossRef Google Scholar

    [35] Tang Y Y, Bi X W, Yin R S. Concentrations and isotopic variability of mercury in sulfide minerals from the Jinding Zn-Pb deposit, southwest China[J]. Ore Geology Reviews, 2017, 90: 958-969. doi: 10.1016/j.oregeorev.2016.12.009

    CrossRef Google Scholar

    [36] Xu C X, Yin R S, Peng J T, et al. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu Area, southwestern China[J]. Mineralium Deposita, 2018, 53: 339-352. doi: 10.1007/s00126-017-0743-7

    CrossRef Google Scholar

    [37] Fu S L, Hu R Z, Yin R S, et al. Mercury and in situ sulfur isotopes as constraints on the metal and sulfur sources for the world's largest Sb deposit at Xikuangshan, southern China[J]. Mineralium Deposita, 2020, 55: 1353-1364. doi: 10.1007/s00126-019-00940-1

    CrossRef Google Scholar

    [38] Yin R S, Deng C Z, Lehmann B et al. Magmatic-hydrothermal origin of mercury in carlin-style and epithermal gold deposits in China: Evidence from mercury stable isotopes[J]. ACS Earth and Space Chemistry, 2019, 3(8): 1631-1639. doi: 10.1021/acsearthspacechem.9b00111

    CrossRef Google Scholar

    [39] Liu Y F, Qi H W, Bi X W, et al. Mercury and sulfur isotopic composition of sulfides from sediment-hosted lead-zinc deposits in Lanping Basin, southwestern China[J]. Chemical Geology, 2020, 559: 119910.

    Google Scholar

    [40] Zhu C W, Tao C H, Yin R S, et al. Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, southwest Indian Ridge[J]. Geochimica et Cosmochimica Acta, 2020, 281: 91-101. doi: 10.1016/j.gca.2020.05.008

    CrossRef Google Scholar

    [41] 孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339-348.

    Google Scholar

    Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339-348.

    Google Scholar

    [42] Gao Z F, Zhu X K, Sun J, et al. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China[J]. Mineralium Deposita, 2018, 53: 55-65. doi: 10.1007/s00126-017-0724-x

    CrossRef Google Scholar

    [43] 秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161.

    Google Scholar

    Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161.

    Google Scholar

    [44] Li Y, Mccoy-West A, Zhang S, et al. Controlling mech-anisms for molybdenum isotope fractionation in porphyry deposits: The Qulong example[J]. Economic Geology, 2019, 114(5): 981-992. doi: 10.5382/econgeo.4653

    CrossRef Google Scholar

    [45] 闻静, 张羽旭, 温汉捷, 等. 特殊地质样品中钼同位素分析的化学前处理方法研究[J]. 岩矿测试, 2020, 39(1): 30-40.

    Google Scholar

    Wen J, Zhang Y X, Wen H J, et al. Research on the chemical pretreatment for Mo isotope analysis of special geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40.

    Google Scholar

    [46] Molnár F, Mänttäri I, O'Brien H, et al. Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland[J]. Ore Geology Reviews, 2016, 77: 133-162. doi: 10.1016/j.oregeorev.2016.02.012

    CrossRef Google Scholar

    [47] Lauretta D S, Klaue B, Blum J D, et al. Mercury abun-dances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2807-2818. doi: 10.1016/S0016-7037(01)00630-5

    CrossRef Google Scholar

    [48] Blum J D, Johnson, M W. Recent developments in mer-cury stable isotope analysis[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 733-757. doi: 10.2138/rmg.2017.82.17

    CrossRef Google Scholar

    [49] Yin R S, Feng X B, Shi W F. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review[J]. Applied Geochemistry, 2010, 25(10): 1467-1477. doi: 10.1016/j.apgeochem.2010.07.007

    CrossRef Google Scholar

    [50] Yin R S, Feng X B, Chen J. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications[J]. Environmental Science & Technology, 2014, 48(10): 5565-5574.

    Google Scholar

    [51] Sun R Y, Sonke J E, Liu G. Biogeochemical controls on mercury stable isotope compositions of world coal deposits: A review[J]. Earth-Science Reviews, 2016, 152: 1-13. doi: 10.1016/j.earscirev.2015.11.005

    CrossRef Google Scholar

    [52] 李春辉, 梁汉东, 曹庆一, 等. 煤汞同位素地球化学研究进展[J]. 高校地质学报, 2018, 24(4): 536-550.

    Google Scholar

    Li C H, Liang H D, Cao Q Y, et al. Progresses on mercury isotopic geochemistry of coal[J]. Geological Journal of China Universities, 2018, 24(4): 536-550.

    Google Scholar

    [53] Meier M M M, Cloquet C, Marty B. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation[J]. Geochimica et Cosmochimica Acta, 2016, 182: 55-72. doi: 10.1016/j.gca.2016.03.007

    CrossRef Google Scholar

    [54] Moynier F, Chen J B, Zhang K, et al. Chondritic mercury isotopic composition of Earth and evidence for evaporative equilibrium degassing during the formation of eucrites[J]. Earth and Planetary Science Letters, 2020: 116544.

    Google Scholar

    [55] Sial A N, Lacerda L D, Ferreira V P, et al. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous-Paleogene transition[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 387(7): 153-164.

    Google Scholar

    [56] Thibodeau A M, Ritterbush K, Yager J A, et al. Mercury anomalies and the timing of biotic recovery following the End-Triassic mass extinction[J]. Nature Commun-ications, 2016, 7: 1-8.

    Google Scholar

    [57] Thibodeau A M, Bergquist B A. Do mercury isotopes record the signature of massive volcanism in marine sedimentary records?[J]. Geology, 2017, 45(1): 95-96. doi: 10.1130/focus012017.1

    CrossRef Google Scholar

    [58] Sial A N, Chen J B, Lacerda L D, et al. Mercury enri-chment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts[J]. Cretaceous Research, 2016, 66: 60-81. doi: 10.1016/j.cretres.2016.05.006

    CrossRef Google Scholar

    [59] Grasby S E, Shen W, Yin R, et al. Isotopic signatures of mercury contamination in latest Permian oceans[J]. Geology, 2017, 45(1): 55-58. doi: 10.1130/G38487.1

    CrossRef Google Scholar

    [60] Shen J, Algeo T J, Planavsky N J, et al. Mercury enrichments provide evidence of Early Triassic volcanism following the End-Permian mass extinction[J]. Earth Science Reviews, 2019, 195: 191-212. doi: 10.1016/j.earscirev.2019.05.010

    CrossRef Google Scholar

    [61] Smith C N, Kesler S E, Klaue B, et al. Mercury isotope fractionation in fossil hydrothermal systems[J]. Geology, 2005, 33(10): 825-828. doi: 10.1130/G21863.1

    CrossRef Google Scholar

    [62] Blum J D, Bergquist B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388: 353-359. doi: 10.1007/s00216-007-1236-9

    CrossRef Google Scholar

    [63] 李仲根, 冯新斌, 何天容, 等. 王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J]. 矿物岩石地球化学通报, 2005, 24(2): 140-143. doi: 10.3969/j.issn.1007-2802.2005.02.009

    CrossRef Google Scholar

    Li Z G, Feng X B, He T R, et al. Determination of total mercury in soil and sediment by aquaregia digestion in the water bath coupled with cold vapor atom fluorescence spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(2): 140-143. doi: 10.3969/j.issn.1007-2802.2005.02.009

    CrossRef Google Scholar

    [64] 林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528-1533.

    Google Scholar

    Lin H L, Zhu R L, Yu L, et al. Determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediments by water bath digestion-atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1528-1533.

    Google Scholar

    [65] 王翠萍, 闫海鱼, 刘鸿雁, 等. 使用Lumex测汞仪快速测定固体样品中总汞的方法[J]. 地球与环境, 2010, 38(3): 378-382.

    Google Scholar

    Wang C P, Yan H Y, Liu H Y, et al. The method of rapidly measuring total mercury in solid samples using Lumex analytical equipment[J]. Earth and Environment, 2010, 38(3): 378-382.

    Google Scholar

    [66] 李世龙, 李丽和, 蓝月存, 等. 运用测汞仪快速测定水系沉积物中的总汞[J]. 广州化学, 2016, 41(2): 68-71.

    Google Scholar

    Li S L, Li L H, Lan Y C, et al. Rapid determination of total mercury in sediment by using Lumex analytical equipment[J]. Guangzhou Chemistry, 2016, 41(2): 68-71.

    Google Scholar

    [67] Dzurko M, Foucher D, Hintelmann H. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS)[J]. Analytical and Bioanalytical Chemistry, 2009, 393(1): 345-355. doi: 10.1007/s00216-008-2165-y

    CrossRef Google Scholar

    [68] Yin R S, Krabbenhoft D P, Bergquist B A, et al. Effects of mercury and thallium concentrations on high precision determination of mercury isotope composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(10): 2060-2068. doi: 10.1039/C6JA00107F

    CrossRef Google Scholar

    [69] Geng H Y, Yin R S, Li X D. An optimized protocol for high precision measurement of Hg isotopic compositions in samples with low concentrations of Hg using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(11): 1932-1940. doi: 10.1039/C8JA00255J

    CrossRef Google Scholar

    [70] Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1): 139-149.

    Google Scholar

    [71] Matthias M M M, Cloquet C, Marty B. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation[J]. Geochimica et Cosmochimica Acta, 2016, 182: 55-72. doi: 10.1016/j.gca.2016.03.007

    CrossRef Google Scholar

    [72] 迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-648. doi: 10.3321/j.issn:0379-1726.2004.06.013

    CrossRef Google Scholar

    Chi Q H. Abundance of mercury in crust, rocks and loose sediments[J]. Geochimica, 2004, 33(6): 641-648. doi: 10.3321/j.issn:0379-1726.2004.06.013

    CrossRef Google Scholar

    [73] Gehrke G E, Blum J D, Meyers P A. The geochemical behavior and isotopic composition of Hg in a Mid-Pleistocene western Mediterranean sapropel[J]. Geochimica et Cosmochimica Acta, 2009, 73: 1651-1665. doi: 10.1016/j.gca.2008.12.012

    CrossRef Google Scholar

    [74] Ketris M, Yudovich Y E. Estimations of clarkes for car-bonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78: 135-148. doi: 10.1016/j.coal.2009.01.002

    CrossRef Google Scholar

    [75] Shen J, Algeo T J, Chen J, et al. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin[J]. Earth and Planetary Science Letters, 2019, 511: 130-140. doi: 10.1016/j.epsl.2019.01.028

    CrossRef Google Scholar

    [76] Canil D, Crockford P W, Rossin R, et al. Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth[J]. Chemical Geology, 2015, 396: 134-142. doi: 10.1016/j.chemgeo.2014.12.029

    CrossRef Google Scholar

    [77] 侯渭, 谢鸿森, 周文戈. 陨石分类研究进展及其地学意义[J]. 地质科技情报, 2001, 20(1): 25-29. doi: 10.3969/j.issn.1000-7849.2001.01.005

    CrossRef Google Scholar

    Hou W, Xie H S, Zhou W G. Development of studies on meteorite taxology and its significance in Earth science[J]. Geological Science and Technology Information, 2001, 20(1): 25-29. doi: 10.3969/j.issn.1000-7849.2001.01.005

    CrossRef Google Scholar

    [78] Smith C N, Kesler S E, Blum J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters, 2008, 269(3-4): 399-407. doi: 10.1016/j.epsl.2008.02.029

    CrossRef Google Scholar

    [79] Sherman L S, Blum J D, Nordstrom D K, et al. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift[J]. Earth and Planetary Science Letters, 2009, 279(1-2): 86-96. doi: 10.1016/j.epsl.2008.12.032

    CrossRef Google Scholar

    [80] Zambardi T, Sonke J E, Toutain J P, et al. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 236-243. doi: 10.1016/j.epsl.2008.10.023

    CrossRef Google Scholar

    [81] 《中国矿床》编委会. 中国矿床[M]. 北京: 地质出版社, 1994.

    Google Scholar

    Editorial committee of <Mineral deposit in China>. Mineral deposit in China[M]. Beijing: Geological Publishing House, 1994.

    Google Scholar

    [82] Yin R S, Feng X B, Wang J X, et al. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China[J]. Chemical Geology, 2013, 336: 72-79. doi: 10.1016/j.chemgeo.2012.04.030

    CrossRef Google Scholar

    [83] Gray J E, Pribil M J, Higueras P L. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain[J]. Chemical Geology, 2013, 357: 150-157. doi: 10.1016/j.chemgeo.2013.08.036

    CrossRef Google Scholar

    [84] 戴自希, 盛继福, 白冶, 等. 世界铅锌资源的分布与潜力[M]. 北京: 地震出版社, 2005.

    Google Scholar

    Dai Z X, Sheng J F, Bai Y, et al. Distribution and potentiality of lead and zinc resources in the world[M]. Beijing: Seismological Press, 2005.

    Google Scholar

    [85] Yin R S, Feng X B, Hurley J P, et al. Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites[J]. Scientific Reports, 2016, 6: 18686. doi: 10.1038/srep18686

    CrossRef Google Scholar

    [86] Leach D L, Song Y C, Hou Z Q. The world-class Jinding Zn-Pb deposit: Ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. Mineralium Deposita, 2016, 52: 281-296.

    Google Scholar

    [87] 赵一鸣, 吴良士, 白鸽, 等. 中国主要金属矿床成矿规律[M]. 北京: 地质出版社, 2004: 1-411.

    Google Scholar

    Zhao Y M, Wu L S, Bai G, et al. Mineral deposit in China[M]. Beijing: Geological Publishing House, 2004: 1-411.

    Google Scholar

    [88] 王义天, 刘俊辰, 毛景文. 3种主要类型金矿床成矿特征、成矿条件及找矿意义[J]. 黄金, 2020, 41(9): 12-21.

    Google Scholar

    Wang Y T, Liu J C, Mao J W, et al. Metallogenic characteristics and conditions of 3 main types of gold deposits and their exploration significances[J]. Gold, 2020, 41(9): 12-21.

    Google Scholar

    [89] Deng C Z, Sun G Y, Rong Y M. Recycling of mercury from the atmosphere-ocean system into volcanic-arc-associated epithermal gold systems[J]. Geology, 2020, 49. https://doi.org/10.1130/G48132.1.

    Google Scholar

    [90] Zambardi T, Sonke J E, Toutain J P, et al. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 236-243. doi: 10.1016/j.epsl.2008.10.023

    CrossRef Google Scholar

    [91] Zheng W, Foucher D, Hintelmann H. Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9): 1097-1104. doi: 10.1039/b705677j

    CrossRef Google Scholar

    [92] Estrade N, Carignan J, Sonke J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2693-2711. doi: 10.1016/j.gca.2009.01.024

    CrossRef Google Scholar

    [93] Wiederhold J G, Cramer C J, Daniel K, et al. Equilibrium mercury isotope fractionation between dissolved Hg(Ⅱ) species and thiol-bound Hg[J]. Environmental Science & Technology, 2010, 44(11): 4191-4197.

    Google Scholar

    [94] Jiskra M, Wiederhold J G, Bourdon B, et al. Solution speciation controls mercury isotope fractionation of Hg(Ⅱ) sorption to goethite[J]. Environmental Science & Technology, 2012, 46(12): 6654-6662.

    Google Scholar

    [95] Bergquist B A, Blum J D. Mass-dependent and inde-pendent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318(5849): 417-420. doi: 10.1126/science.1148050

    CrossRef Google Scholar

    [96] Zheng W, Hintelmann H. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6704-6715. doi: 10.1016/j.gca.2009.08.016

    CrossRef Google Scholar

    [97] Kritee K, Blum J D, Barkay T. Mercury stable isotope fractionation during reduction of Hg(Ⅱ) by different microbial pathways[J]. Environmental Science & Technology, 2008, 42(24): 9171-9177.

    Google Scholar

    [98] Kritee K, Barkay T, Blum J D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1285-1296. doi: 10.1016/j.gca.2008.11.038

    CrossRef Google Scholar

    [99] Bigeleisen J. Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements[J]. Journal of the American Chemical Society, 1996, 118(15): 3676-3680. doi: 10.1021/ja954076k

    CrossRef Google Scholar

    [100] Schauble E A. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements[J]. Geochimica et Cosmochimica Acta, 2007, 71(9): 2170-2189. doi: 10.1016/j.gca.2007.02.004

    CrossRef Google Scholar

    [101] Ghosh S, Schauble E A, Couloume G L, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology, 2013, 336: 5-12. doi: 10.1016/j.chemgeo.2012.01.008

    CrossRef Google Scholar

    [102] Buchachenko A L. Magnetic isotope effect: Nuclear spin control of chemical reactions[J]. The Journal of Physical Chemistry A, 2001, 105(44): 9995-10011. doi: 10.1021/jp011261d

    CrossRef Google Scholar

    [103] Motta L C, Chien A D, Rask A E, et al. Mercury magnetic isotope effect: A plausible photochemical mechanism[J]. The Journal of Physical Chemistry A, 2020, 124: 3711-3719. doi: 10.1021/acs.jpca.0c00661

    CrossRef Google Scholar

    [104] Motta L C, Kritee K, Blum J D, et al. Mercury isotope fractionation during the photochemical reduction of Hg(Ⅱ) coordinated with organic ligands[J]. The Journal of Physical Chemistry A, 2020, 124: 2842-2853. doi: 10.1021/acs.jpca.9b06308

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(2675) PDF downloads(149) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint