Citation: | WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085 |
The common analysis methods of marine sediments, such as open digestion or high-pressure closed digestion combined with inductively coupled plasma-mass spectrometry (ICP-MS) or inductively coupled plasma-optical emission spectroscopy (ICP-OES) determination, and pressed powder pellet or fusion tablets combined with XRF determination, have a low efficiency of sample pretreatment and less detectable elements. The disadvantages of incomplete digestion, slow speed and high detection limit contribute to the inefficiency of the method.
To develop a rapid method for the determination of 48 elements in marine sediments by ICP-MS.
Lithium metaborate was used as a flux to decompose the sample. The obtained sample was leached with 5% nitric acid and determined by ICP-MS. An analytical method for the rapid determination of 48 elements in marine sediments was established. Using the national standard references materials of marine sediment as the high point, the standard working curve was drawn. The amount of flux LiBO2, dilution ratio, analytical isotope and internal standard elements of each element to be measured, instrument measurement mode and interference correction equation of individual elements were determined, an optimal decomposition conditions and measurement conditions were obtained.
The results showed that the accurate results of P, As, Se, Cd, Hg cannot be obtained due to high temperature loss, yet microwave digestion or other methods could be used for pretreatment to avoid loss before determination. The accurate results of 48 elements may be obtained by this method, the relative standard deviation (RSD) of each element was less than 9.7%. The measured values of the national standard references of marine sediments GBW07333, GBW07314, GBW07335 and GBW07336 were consistent with the certified values. The recoveries of each element in marine sediment samples ranged from 83.6% to 118.6%.
This method greatly improves the analysis efficiency, and can analyze more elements, suitable for the analysis of large numbers of samples.
[1] | Guan Y, Sun X M, Shi G Y, et al. Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(5): 1751-1766. doi: 10.1111/1755-6724.13409 |
[2] | Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments[J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012 |
[3] | Wang X H, Gao Y S, Wang Y M, et al. Three cobalt-rich seamount crust reference materials: GSMC-1 to 3[J]. Geostandards & Geoanalytical Research, 2003, 27(3): 251-257. |
[4] | Levin L A, Mengerink K, Gjerde K M, et al. Defining "serious harm" to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 2016, 74: 245-259. doi: 10.1016/j.marpol.2016.09.032 |
[5] | German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114-126. doi: 10.1016/j.chemgeo.2015.11.006 |
[6] | Monecke T, Petersen S, Hannington M, et al. The global rare element endowment of seafloor massive sulfide deposits[J]. 13th SGA Biennial Meeting, 2015, 3: 1261-1263. |
[7] | Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8: 5763. doi: 10.1038/s41598-018-23948-5 |
[8] | Li J R, Lius F, Feng X L, et al. Major and trace element geochemistry of the mid-bay of Bengal surface sediments: Implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z |
[9] | Pham D T, Gouramanis C, Switzer A D, et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits[J]. Marine Geology, 2017, 385: 274-292. doi: 10.1016/j.margeo.2017.01.004 |
[10] | 冯利, 冯秀丽, 王晓明, 等. 末次盛冰期以来南海西北陆坡沉积物来源及其常微量元素对古气候变化的响应[J]. 中国海洋大学学报, 2020, 50(6): 88-100. Feng L, Feng X L, Wang X M, et al. Sediment provenance and climate change since the last glacial maximum record by major and trace elements in the northwestern slope of the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(6): 88-100. |
[11] | Santos I R, Favaro D I, Schaefer C E, et al. Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): Evidence from rare earths and other elements[J]. Marine Chemistry, 2007, 107(4): 464-474. doi: 10.1016/j.marchem.2007.09.006 |
[12] | Xu F J, Hu B Q, Dou T G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013 |
[13] | 贾福福, 沙龙滨, 李冬玲, 等. 西伯利亚极地海域第四纪以来古海洋环境研究进展[J]. 极地研究, 2020, 32(2): 250-263. Jia F F, Sha L B, Li D L, et al. Review of research on quaternary paleoceanography of the Siberian arctic seas[J]. Chinese Journal of Polar Research, 2020, 32(2): 250-263. |
[14] | Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49(6): 621-635. doi: 10.2343/geochemj.2.0361 |
[15] | Iijima K, Yasukawa K, Fujinaga K, et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean[J]. Geochemical Journal, 2016, 50(6): 557-573. doi: 10.2343/geochemj.2.0431 |
[16] | 曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7): 143-155. Zeng Z G, Chen Z X, Zhang Y X, et al. Seafloor hydrothermal activities and their geological environments and products[J]. Marine Sciences, 2020, 44(7): 143-155. |
[17] | Begum Z, Balaram V, Ahmad S M, et al. Determination of trace and rare earth elements in marine sediment reference materials by ICP-MS: Comparison of open and closed acid digestion methods[J]. Atomic Spectroscopy, 2007, 28(2): 41-50. |
[18] | 高晶晶, 刘季花, 张辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J]. 岩矿测试, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007 Gao J J, Liu J H, Zhang H, et al. Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Rock and Mineral Analysis, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007 |
[19] | 王初丹, 罗盛旭. 硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J]. 桂林理工大学学报, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024 Wang C D, Luo S X. Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J]. Journal of Guilin University of Technology, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024 |
[20] | 孙友宝, 宋晓红, 孙媛媛, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定海洋沉积物中的多种金属元素[J]. 中国无机分析化学, 2014, 4(3): 35-38. Sun Y B, Song X H, Sun Y Y, et al. Determination of multiple metallic elements in oceanic sediments by ICP-AES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(3): 35-38. |
[21] | Ahmed A Y, Abdullah P, Wood A K, et al. Determination of some trace elements in marine sediment using ICP-MS and XRF (A comparative study)[J]. Oriental Journal of Chemistry, 2013, 29(2): 645-653. |
[22] | 张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 19. Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 19. |
[23] | 孙萱, 宋金明, 于颖, 等. 熔融制样XRF法测定海洋沉积物中10种主量元素的条件优化[J]. 海洋环境科学, 2020, 39(6): 902-908. Sun X, Song J M, Yu Y, et al. Optimum conditions for the determination of 10 main elements in marine sediments by the fused bead-X-ray fluorescence spectrometry[J]. Marine Environmental Science, 2020, 39(6): 902-908. |
[24] | 王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76. Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. |
[25] | 王蕾, 何红蓼, 李冰. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2003, 22(2): 86-92. Wang L, He H L, Li B. Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J]. Rock and Mineral Analysis, 2003, 22(2): 86-92. |
[26] | 罗磊, 付胜波, 肖洁, 等. 电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅[J]. 岩矿测试, 2014, 33(2): 203-207. Luo L, Fu S B, Xiao J, et al. Determination of lead in argentalium ores containing barite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 203-207. |
[27] | 杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷重金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79. Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79. |
[28] | 杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487. Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487. |
[29] | 苗雪雪, 苗莹, 龚浩如, 等. 不同消解方法测定植株中磷含量的比较研究[J]. 中国农学通报, 2019, 35(20): 132-137. Miao X X, Miao Y, Gong H R, et al. Digestion methods for determining phosphorus content in plants[J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 132-137. |
[30] | 汪勇先, 秦俊法, 吉倩梅, 等. 不同的干燥和灰化过程中生物样品微量元素损失的放射性示踪研究——Ⅰ. 锌、钼、镉和硒[J]. 分析化学, 1985, 13(3): 54-57. Wang Y X, Qin J F, Ji Q M, et al. Investigation on the loss of trace elements in biological materials in different drying and ashing procedures by using radioactive tracers. Ⅰ: Zn, Mo, Cd and Se[J]. Chinese Journal of Analytical Chemistry, 1985, 13(3): 54-57. |
[31] | 冯婧. 重金属元素分析消解技术在镉、砷检测中的应用比较[J]. 食品研究与开发, 2017, 38(16): 143-148. Feng J. Comparison and application of digestion methods of heavy metals on cadmium and arsenic determination[J]. Food Research and Development, 2017, 38(16): 143-148. |
[32] | 任玲玲, 谭胜楠, 李建朝. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80. Ren L L, Tan S N, Li J C. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80. |
[33] | 刘珂珂, 霍现宽, 褚艳红, 等. 超声辅助-王水提取法在测定土壤中重金属元素的应用[J]. 冶金分析, 2019, 39(1): 48-53. Liu K K, Huo X K, Chu Y H, et al. Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J]. Metallurgical Analysis, 2019, 39(1): 48-53. |
[34] | 禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77-84. Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77-84. |
[35] | 董学林, 贾正勋, 汪慧平, 等. 共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J]. 冶金分析, 2016, 36(3): 6-10. Dong X L, Jia Z X, Wang H P, et al. Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 6-10. |
[36] | 范爽, 郭超, 张百慧, 等. 基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J]. 冶金分析, 2020, 40(8): 8-21. Fan S, Guo C, Zhang B H, et al. Evaluation of analytical method performance for determination of heavy metals in soils by energy dispersive X-ray fluorescence spectrometry based on inter-laboratory collaborative experiments[J]. Metallurgical Analysis, 2020, 40(8): 8-21. |
[37] | 张瑞仙, 崔智勇, 王建绣, 等. 高压罐消解和湿法消解测定食品中铅的比较[J]. 中国卫生检验杂志, 2016, 26(17): 2468-2470. Zhang R X, Cui Z Y, Wang J X, et al. Comparison between high pressure tank digestion and wet digestion in the determination of lead in food[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(17): 2468-2470. |
[38] | 徐浩然, 张瑞娜, 胡济民, 等. 硫和硫化物对垃圾焚烧过程中Pb迁移分布的影响[J]. 环境工程学报, 2019, 13(1): 175-182. Xu H R, Zhang R N, Hu J M, et al. Influence of sulfur and sulfide on migration and distribution of lead in waste incineration process[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 175-182. |
[39] | 邱海鸥, 郑洪涛, 汤志勇. 岩石矿物分析[J]. 分析试验室, 2014, 33(11): 1349-1364. Qiu H O, Zheng H T, Tang Z Y. Analysis of rocks and minerals[J]. Chinese Journal of Analysis Laboratory, 2014, 33(11): 1349-1364. |
[40] | 门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. |
[41] | 李占江. 金银及有色金属地勘矿冶分析手册[M]. 北京: 地质出版社, 2013: 490-495. Li Z J. Handbook for geological prospecting and metallurgy of gold, silver and nonferrous metals[M]. Beijing: Geological Publishing House, 2013: 490-495. |