2017 Vol. 23, No. 2
Article Contents

SUN Zhi-yong, CHEN Kai-yuan, FENG Jian-wei, SUI Shu-ling. RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE[J]. Journal of Geomechanics, 2017, 23(2): 272-279.
Citation: SUN Zhi-yong, CHEN Kai-yuan, FENG Jian-wei, SUI Shu-ling. RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE[J]. Journal of Geomechanics, 2017, 23(2): 272-279.

RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE

  • Tight sandstone oil gas is an important unconventional resource.As the primary seepage channel, fracture networks commonly have the charactistics including complex distribution regularity as well as multiphase development and filling process, which directly influence fracture prediction accuracy.At present, there is no systematic method for solving the quantitative prediction of structural fissures, which is still in the exploration stage. Therefore, it is necessary to explore more about fraction networks identification, filling process and formation-superposition evolution mechanism. and set up a reasonable fracture characterization model for quantitative prediction of fracture networks parameter distribution range. On the basis of plenty of literature research, it is believed that the research of tight reservoir fracture is mainly in three key directions.Field observation and core observation were carried out to analyze the development characteristics of fracture networks.combing with tectonic evolution history and fluid-inclusion analysis, fractures development times were defined. Then, hydrothermal filling simulation experiments and rock mechanics experiments were conducted to reveal the mechanism of fractures filling and dynamic process of fractures from initiationto extension and superposition. Finally, experimental statistical methods were used to establish the anisotropic failure criterion in view of different filling rules and create quantitative characterization of fracture parameters based on the principle of conservation of energy and the theory of strain energy density factor. At last, a theoretical system of multiphase fractures development and their parameters characterization were formed and completed, which provides an important scientific basis for the exploration and exploit of tight sandstone gas field.

  • 加载中
  • [1] 戴金星, 倪云燕, 吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发, 2012, 39(3): 257~264.

    Google Scholar

    DAI Jin-xing, NI Yun-yan, WU Xiao-qi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 257~264.

    Google Scholar

    [2] 张国生, 赵文智, 杨涛, 等.我国致密砂岩气资源潜力、分布与未来发展地位[J].中国工程科学, 2012, 14(6): 87~93.

    Google Scholar

    ZHANG Guo-sheng, ZHAO Wen-zhi, YANG Tao, et al. Resource evaluation, position and distribution of tight sandstone gas in China[J]. Engineering Science, 2012, 14(6): 87~93.

    Google Scholar

    [3] Olson J E, Laubach S E, Lander R H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535~1549. doi: 10.1306/08110909100

    CrossRef Google Scholar

    [4] van Golf-Racht T D. Fundamentals of fractured reservoir engineering[M]. New York: Elsevier Scientific, 1982.

    Google Scholar

    [5] Fossen H, Gabrielsen R H. Experimental modeling of extensional fault systems by use of plaster[J]. Journal of Structural Geology, 1996, 18(5): 673~687. doi: 10.1016/S0191-8141(96)80032-0

    CrossRef Google Scholar

    [6] Ueta K, Tani K, Kato T. Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting[J]. Engineering Geology, 2000, 56(1/2): 197~210.

    Google Scholar

    [7] 杨更社, 谢定义, 张长庆, 等.岩石损伤特性的CT识别[J].岩石力学与工程学报, 1996, 15(1): 48~54.

    Google Scholar

    YANG Geng-she, XIE Ding-yi, ZHANG Chang-qing, et al. CT Identification of rock damage properties[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 48~54.

    Google Scholar

    [8] 葛修润, 任建喜, 蒲毅彬, 等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报, 1999, 18(5): 497~502.

    Google Scholar

    GE Xiu-run, REN Jian-xi, PU Yi-bin, et al. A real in time CT triaxial testing study of meso damage evolution law of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497~502.

    Google Scholar

    [9] 刘京红, 姜耀东, 赵毅鑫, 等.基于CT图像的岩石破裂过程裂纹分形特征分析[J].河北农业大学学报, 2011, 34(4): 104~107.

    Google Scholar

    LIU Jing-hong, JIANG Yao-dong, ZHAO Yi-xin, et al. Fractal characteristic analysis of rock breakage process based on CT test images[J]. Journal of Agricultural University of Hebei, 2011, 34(4): 104~107.

    Google Scholar

    [10] 肖承文, 朱筱敏, 李进福, 等.高压低渗致密裂缝性砂岩测井评价技术[J].新疆石油地质, 2007, 28(6): 761~763.

    Google Scholar

    XIAO Cheng-wen, ZHU Xiao-min, Li Jin-fu, et al. Well-logging evaluation for fractured tight sand reservoirs with high pressure and low permeability[J]. Xinjiang Petroleum Geology, 2007, 28(6): 761~763.

    Google Scholar

    [11] Price N J, Rhodes F H T. Fault and joint development in brittle and semi-brittle rock[M]. London: Pergamon Press, 1966.

    Google Scholar

    [12] Murray G H. Quantitative fracture study: sanish pool, Mckenzie County, North Dakota[J]. AAPG Bulletin, 1968, 52(1): 57~65.

    Google Scholar

    [13] 曾锦光, 罗元华, 陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报, 1982, 14(2): 202~206.

    Google Scholar

    ZENG Jin-guang, LUO Yuan-hua, CHEN Tai-yuan. A method for the study of reservoir fracturing based on structural principal curvatures[J]. Acta Mechanica Sinica, 1982, 14(2): 202~206.

    Google Scholar

    [14] 文世鹏, 李德同.储层构造裂缝数值模拟技术[J].石油大学学报(自然科学版), 1996, 20(5): 17~24.

    Google Scholar

    WEN Shi-peng, Li De-tong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of the University of Petroleum, China, 1996, 20(5): 17~24.

    Google Scholar

    [15] 周新桂, 操成杰, 袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展, 2003, 18(3): 398~404.

    Google Scholar

    ZHOU Xin-gui, CAO Cheng-jie, YUAN Jia-yin. The research actuality and major progresses on the quantitative forecast of reservoir fractures and hydrocarbon migration law[J]. Advance in Earth Sciences, 2003, 18(3): 398~404.

    Google Scholar

    [16] 丁中一, 钱祥麟, 霍红, 等.构造裂缝定量预测的一种新方法——二元法[J].石油与天然气地质, 1998, 19(1): 1~7, 14. doi: 10.11743/ogg19980101

    CrossRef Google Scholar

    DING Zhong-yi, QIAN Xiang-lin, HUO Hong, et al. A new method for quantitative prediction of tectonic fractures—two-factor method[J]. Oil & Gas Geology, 1998, 19(1): 1~7, 14. doi: 10.11743/ogg19980101

    CrossRef Google Scholar

    [17] 冯建伟, 戴俊生, 刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报, 2011, 17(4): 303~311.

    Google Scholar

    FENG Jian-wei, DAI Jun-sheng, LIU Mei-li. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 2011, 17(4): 303~311.

    Google Scholar

    [18] Mclamore R, Gray K E. The mechanical behavior of transversely isotropic sedimentary rocks[A]. Transition in American Society of Mechanical Engineering Series B[C], 1967:62~76.

    Google Scholar

    [19] McKinnon S D, de la Barra I G. Fracture initiation, growth and effect on stress field: a numerical investigation[J]. Journal of Structural Geology, 1998, 20(12): 1673~1689. doi: 10.1016/S0191-8141(98)00080-7

    CrossRef Google Scholar

    [20] Eichhubl P, Aydin A. Ductile opening-mode fracture by pore growth and coalescence during combustion alteration of siliceous mudstone[J]. Journal of Structural Geology, 2003, 25(1): 121~134. doi: 10.1016/S0191-8141(02)00055-X

    CrossRef Google Scholar

    [21] 金衍, 陈勉.井壁稳定力学[M].北京:科学出版社, 2012.

    Google Scholar

    JIN Yan, CHEN Mian. Borehole wall stability and mechanical[M]. Beijing: Science Press, 2012.

    Google Scholar

    [22] 赵文韬, 侯贵廷, 孙雄伟, 等.库车东部碎屑岩层厚和岩性对裂缝发育的影响[J].大地构造与成矿学, 2013, 37(4): 603~610.

    Google Scholar

    ZHAO Wen-tao, HOU Gui-ting, SUN Xiong-wei, et al. Influence of Layer Thickness and Lithology on the fracture Growth of Clastic Rock in East Kuqa[J]. GeotectonicaetMetallogenia, 2013, 37(4): 603~610.

    Google Scholar

    [23] Lorenz J C, Sterling J L, Schechter D S, et al. Natural fractures in the spraberry formation, midland basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3): 505~524.

    Google Scholar

    [24] Rijken P, Cooke M L. Role of shale thickness on vertical connectivity of fractures: Application of crack-bridging theory to the Austin Chalk, Texas[J]. Tectonophysics, 2001, 337(1/2): 117~133.

    Google Scholar

    [25] 曾联波, 赵继勇, 朱圣举, 等.岩层非均质性对裂缝发育的影响研究[J].自然科学进展, 2008, 18(2): 216~220.

    Google Scholar

    ZENG Lian-bo, ZHAO Ji-yong, ZHU Sheng-ju, et al. Study on influence of rock heterogeneity on fracture development[J]. Progress in Natural Science, 2008, 18(2): 216~220.

    Google Scholar

    [26] Wong R H C, Leung W L, Wang S W. Shear strength studies on rock-like models containing arrayed open joints[A]. Proceedings of the 38th U.S. Symposium on Rock Mechanics (USRMS)[C]. Washington DC:American Rock Mechanics Association, 2001, 843~849.

    Google Scholar

    [27] Ichikawa S J, Lim H. Shear fracture analysis for brittle materials[A]. Proceedings of the 8th ISRM Congress[C]. Tokyo, Japan: International Society for Rock Mechanics, 1995, 233~235.

    Google Scholar

    [28] 任伟中, 白世伟, 丰定祥. 直剪条件下共面闭合断续节理岩体的强度特性分析[A]//第六次全国岩石力学与工程学术大会论文集[C]. 武汉, 2000: 147~151.

    Google Scholar

    Ren Weizhong, Bai Shiwei, Feng Dingxiang. Strength Behaviour of Rockmass Containing Coplanar Colose Intermittent Joints Under Direct Shear Condition[A]. //Proceedings of the 6th National Conference on Rock Mechanics and Engineering[C]. Wuhan, 2000:147~151.

    Google Scholar

    [29] 刘远明, 夏才初.共面闭合非贯通节理岩体贯通机制和破坏强度准则研究[J].岩石力学与工程学报, 2006, 25(10): 2086~2091. doi: 10.3321/j.issn:1000-6915.2006.10.021

    CrossRef Google Scholar

    LIU Yuan-ming, XIA Cai-chu. Study on fracture mechanism and criteria of failure strength of rock mass containing coplanar close discontinuous joints under direct shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2086~2091. doi: 10.3321/j.issn:1000-6915.2006.10.021

    CrossRef Google Scholar

    [30] Barton N R. Shear strength of rockfill, interfaces and rock joints, and their points of contact in rock dump design[A]. Fourie A. Rock Dumps 2008[M]. Perth: Australian Centre for Geomechanics, 2008.

    Google Scholar

    [31] 刘传孝, 蒋金泉, 王素华.节理裂隙砂岩稳定性的混沌评价准则[J].采矿与安全工程学报, 2007, 24(3): 306~310.

    Google Scholar

    LIU Chuan-xiao, JIANG Jin-quan, WANG Su-hua. Qualitative chaotic evaluation criterion for stability of joint fracture sandstone[J]. Journal of Mining & Safety Engineering, 2007, 24(3): 306~310.

    Google Scholar

    [32] 刘雷, 杜建国, 周晓成, 等.青海玉树MS7.1地震震后断层流体地球化学连续观测[J].地球物理学进展, 2012, 27(3): 888~893. doi: 10.6038/j.issn.1004-2903.2012.03.008

    CrossRef Google Scholar

    LIU Lei, DU Jian-guo, ZHOU Xiao-cheng, et al. Continuously observation of fault fluid geochemistry after Yushu MS7.1 earthquake[J]. Progress in Geophysics, 2012, 27(3): 888~893. doi: 10.6038/j.issn.1004-2903.2012.03.008

    CrossRef Google Scholar

    [33] Holland M, Urai J L. Evolution of anastomosing crack-seal vein networks in limestones: Insight from an exhumed high-pressure cell, Jabal Shams, Oman Mountains[J]. Journal of Structural Geology, 2010, 32(9): 1279~1290. doi: 10.1016/j.jsg.2009.04.011

    CrossRef Google Scholar

    [34] Bons P D, Elburg M A, Gomez-Rivas E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33~62. doi: 10.1016/j.jsg.2012.07.005

    CrossRef Google Scholar

    [35] Lespinasse M. Are fluid inclusion planes useful in structural geology?[J]. Journal of Structural Geology, 1999, 21(8/9): 1237~243.

    Google Scholar

    [36] 李静, 查明.碳酸盐岩储层流体包裹体差分拉曼光谱的研究[J].光谱学与光谱分析, 2010, 30(9): 2397~2400.

    Google Scholar

    LI Jing, ZHA Ming. The difference-Raman spectra of fluid inclusion of carbonate reservoir[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2397~2400.

    Google Scholar

    [37] 李云, 时志强.四川盆地中部须家河组致密砂岩储层流体包裹体研究[J].岩性油气藏, 2008, 20(1): 27~32.

    Google Scholar

    LI Yun, SHI Zhi-qiang. Study on fluid inclusion of tight sandstone reservoir of upper Triassic Xujiahe Formation in Central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27~32.

    Google Scholar

    [38] 冯建伟, 戴俊生, 马占荣, 等.低渗透砂岩裂缝参数与应力场关系理论模型[J].石油学报, 2011, 32(4): 664~671. doi: 10.7623/syxb201104015

    CrossRef Google Scholar

    FENG Jian-wei, DAI Jun-sheng, MA Zhan-rong, et al. The theoretical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4): 664~671. doi: 10.7623/syxb201104015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(522) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint