Citation: | QIN Tao, LI Lin-chuan, TANG Zheng, JIANG Bin, QIAN Chen, SUN Wei, NA Fu-chao, SHI Lu. A STUDY ON THE PETROGENESIS AND TECTONIC SETTING OF THE SIBAN GRANITE MASS IN ZHALANTUN AREA, GREAT KHINGAN[J]. Journal of Geomechanics, 2017, 23(3): 369-381. |
The Siban rock mass in Zhalantun area of Great Khingan is mainly composed of syenogranites and monzonitic granites with fine-grained diorite enclaves developed inside. LA-ICP-MS zircon U-Pb dating results reveal that the crystallization ages of the monzonitic granite and syenogranite in the Siban rock mass are 291±3 Ma and 303±3 Ma respectively, proving that the Siban rock mass emplaced during the late Paleozoic era. The geochemical results of the whole-rock major and trace elements exhibit that the Siban granite yields high SiO2 (67.9~77.5 wt%), alkaline components (w (Na2O+K2O)=7.55~10.79 wt%) and Al2O3 (12.05~16.33 wt%). It is also highly enriched with LREE and LILE while with a depletion of HFSE (e.g. Nb, Ta, Ti and P), which is comparable to high K calc-alkalne I-type granite. The existence of fine-grained diorite enclaves and associated basic rocks developed inside the Siban granlte reveals that the Siban granite has the characteristics of magma mixing between mantle and crustal magmas and subsequently underwent the fractional crystallizations of pyroxene, amphibole, Ti-enriched minerals, plagioclase and apatite, which is supported by their geochemical features. Taken all together, the petrologies, geochemistries and petrogenesises indicate that the Siban rock mass is akin to the post-collision granite and formed by mantle-crust interactions under the delamination of lithospheric mantle environment.
[1] | 徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841~1857. XU Bei, ZHAO Pan, BAO Qing-zhong, et al. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt(XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7):1841~1857. |
[2] | 唐克东, 王莹, 何国琦, 等.中国东北及邻区大陆边缘构造[J].地质学报, 1995, 69(1):16~30. TANG Ke-dong, WANG Ying, HE Guo-qi, et al. Continental-margin structure of northeast china and its adjacent areas[J]. Acta Geologica Sinica, 1995, 69(1):16~30. |
[3] | 张炯飞, 李之彤, 金成洙.中国东北部地区埃达克岩及其成矿意义[J].岩石学报, 2004, 20(2):361~368. ZHANG Jiong-fei, LI Zhi-tong, JIN Cheng-zhu. Adakites in northeastern China and their mineralized implications[J]. Acta Petrologica Sinica, 2004, 20(2):361~368. |
[4] | 李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评, 1998, 44(4):339~347. LI Jing-yi. Some new ideas on tectonics of NE China and its neighboring areas[J]. Geological Review, 1998, 44(4):339~347. |
[5] | 刘永江, 张兴洲, 金巍, 等.东北地区晚古生代区域构造演化[J].中国地质, 2010, 37(4):943~951. LIU Yong-jiang, ZHANG Xing-zhou, JIN Wei, et al. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 2010, 37(4):943~951. |
[6] | 张兴洲, 乔德武, 迟效国, 等.东北地区晚古生代构造演化及其石油地质意义[J].地质通报, 2011, 30(2/3):205~213. ZHANG Xing-zhou, QIAO De-wu, CHI Xiao-guo, et al. Late-Paleozoic tectonic evolution and oil-gas potential in northeastern China[J]. Geological Bulletin of China, 2011, 30(2/3):205~213. |
[7] | 李双林, 欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质, 1998, 18(3):45~54. LI Shuang-lin, OUYANG Zi-yuan. Tectonic framework and evolution of Xing'anling Mongolian Orogenic Belt (XMOB) and its adjacent region[J]. Marine Geology & Quaternary Geology, 1998, 18(3):45~54. |
[8] | 吴福元, 孙德有, 林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999, 15(2):181~189. WU Fu-yuan, SUN De-you, LIN Qiang. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2):181~189. |
[9] | Wu F Y, Sun D Y, LI H M, et al. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143~173. |
[10] | Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1~30. doi: 10.1016/j.jseaes.2010.11.014 |
[11] | 施光海, 苗来成, 张福勤, 等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报, 2004, 49(4):384~389. SHI Guang-hai, MIAO Lai-cheng, ZHANG Fu-qin, et al. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China[J]. Chinese Science Bulletin, 2004, 49(7):723~729. |
[12] | 隋振民, 葛文春, 徐学纯, 等.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报, 2009, 25(10):2679~2686. SUI Zheng-min, GE Wen-chun, XU Xue-chun, et al. Characteristics and geological implications of the Late Paleozoic post orogenic Shierzhan granite in the Great Xing'an Range[J]. Acta Petrologica Sinica, 2009, 25(10):2679~2686. |
[13] | 孙德有, 吴福元, 李惠民, 等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报, 2000, 45(20):2217~2222. SUN De-you, WU Fu-yuan, LI Hui-min, et al. Emplacement age of the postorogenic A-type granites in Northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2001, 46(5):427~432. |
[14] | 张磊, 吕新彪, 刘阁, 等.兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J].中国地质, 2013, 40(3):869~884. ZHANG Lei, LV Xin-biao, LIU Ge, et al. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the Inner Mongolia-Da Hinggan Mountains orogenic belt[J]. Geology in China, 2013, 40(3):869~884. |
[15] | 武广, 孙丰月, 赵财胜, 等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报, 2005, 50(20):2278~2288. WU Guang, SUN Feng-yue, ZHAO Cai-sheng, et al. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance[J]. Chinese Science Bulletin, 2005, 50(23):2733~2743. |
[16] | 葛文春, 隋振民, 吴福元, 等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报, 2007, 23(2):423~440. GE Wen-chun, SUI Zhen-min, WU Fu-yuan, et al. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China[J]. Acta Petrologica Sinica, 2007, 23(2):423~440. |
[17] | 程银行, 张天福, 李艳锋, 等.内蒙古东乌旗早二叠世超镁铁岩的发现及其构造意义[J].地质学报, 2016, 90(1):115~125. CHENG Yin-hang, ZHANG Tian-fu, LI Yan-feng, et al. Discovery of the Early Permian ultramafic rock in Dong Ujimqi, Inner Mongolia and its tectonic implications[J]. Acta Geologica Sinica, 2016, 90(1):115~125. |
[18] | 赵芝, 迟效国, 刘建峰, 等.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报, 2010, 26(11):3245~3258. ZHAO Zhi, CHI Xiao-guo, LIU Jian-feng, et al. Late Paleozoic arc-related magmatism in Yakeshi region, Inner Mongolia:Chronological and geochemical evidence[J]. Acta Petrologica Sinica, 2010, 26(11):3245~3258. |
[19] | 张超, 刘正宏, 徐仲元, 等.大兴安岭五一林场花岗岩体地球化学特征及成因[J].地质通报, 2013, 32(2/3):365~373. ZHANG Chao, LIU Zheng-hong, XU Zhong-yuan, et al. Characteristics and genesis of the Wuyi Forestry Center granite in the Da Hinggan Mountains[J]. Geological Bulletin of China, 2013, 32(2/3):365~373. |
[20] | 洪大卫, 黄怀曾, 肖宜君, 等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报, 1994, 68(3):219~230. HONG Da-wei, HUANG Huai-zeng, XIAO Yi-jun, et al. The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance[J]. Acta Geologica Sinica, 1994, 68(3):219~230. |
[21] | 洪大卫, 王式, 谢锡林, 等.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 2000, 7(2):441~456. HONG Da-wei, WANG Shi, XIE Xi-lin, et al. Genesis of positive ε(Nd, t) granitoids in the da Hinggan Mts.-Mongolia Orogenic belt and growth continental crust[J]. Earth Science Frontiers, 2000, 7(2):441~456. |
[22] | 郭奎城, 张文龙, 杨晓平, 等.黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版), 2011, 41(4):1077~1083. GUO Kui-cheng, ZHANG Wen-long, YANG Xiao-ping, et al. Origin of Early Permian A-type granite in the Wudaogou Area, Heihe City[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(4):1077~1083. |
[23] | 梁科伟, 李成禄, 张立东, 等.大兴安岭诺敏地区二叠纪花岗岩的地球化学特征及地质意义[J].地质与资源, 2012, 21(2):181~187. LIANG Ke-wei, LI Cheng-lu, ZHANG Li-dong, et al. Geochemistry and its geological implication of the Permian granite in Nuomin, Daxinganling Region[J]. Geology and Resources, 2012, 21(2):181~187. |
[24] | 陈俊, 吕新彪, 姚书振, 等.内蒙古红彦镇地区早二叠世A型花岗岩锆石U-Pb年代学研究[J].矿物岩石地球化学通报, 2013, 32(5):574~582, 632. CHEN Jun, LV Xin-biao, YAO Shu-zhen, et al. Zircon U-Pb ages of A-type granites in the Hongyan Area, Early Permian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5):574~582, 632. |
[25] | Liégeois J P, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization[J]. Lithos, 1998, 45(1/4):1~28. |
[26] | Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535~551. doi: 10.1016/S0024-4937(98)00086-3 |
[27] | 朱弟成, 莫宣学, 王立全, 等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学D辑:地球科学, 2009, 39(7):833~848. ZHU Di-cheng, MO Xuan-xue, WANG Li-quan, et al. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet:Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Science in ChinaSeries D:Earth Sciences, 2009, 52(9):1223~1239. |
[28] | Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(2):297~312. doi: 10.1007/s00410-009-0478-2 |
[29] | Rea A M.The taxonomy, distribution, and status of coastal California cactus wrens[J]. Western Birds, 1990, 21(3):81~126. |
[30] | Liegeois A. Recensie:The survival of the self/R. Harwood (Aldershot, 1998)[J]. Ethical Perspectives, 2000, 7(1):98. |
[31] | Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4):29~44. |
[32] | Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605~626. doi: 10.1016/S0024-4937(98)00085-1 |
[33] | Pearce JA, Harris NBW, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956~983. doi: 10.1093/petrology/25.4.956 |
[34] | Pearce J A. Sources and settings of granitic rocks[J]. Episodes, 1996, 19(4):120~125. |
[35] | 韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64~72. HAN Bao-fu. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3):64~72. |
[36] | Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4):43~55. |
Sketch geological map of Zhalantun Yinhe area in Inner Mongolia
The "irresponsibility" phenomenon of granites and mafic rocks
The Fine grain flash inside granites
Cathodoluminescence images of representative zircons from the sample TWSB04 (a) and 206Pb/238U-207Pb/235U Concordia diagram (b)
Cathodoluminescence images of representative zircons from sample TWSB02 (a) and 206Pb/238U-207Pb/235U Concordia diagram (b)
6 A/NK-A/CNK diagram(a) and K2O-SiO2 diagram(b)
Chondrite-normalized REE patterns (a) and Primitive mantle-normalized trace elements spider diagram (b)
Y-Rb diagram (a) and Th-Rb diagram (b)
Rb/Sc-Th diagram (a) and Rb-Rb/V diagram (b)
SiO2-Mg# discrimination diagram (a) and SiO2-Cr discrimination diagram(b)
Discrimination diagrams of the Siban granite structure