2017 Vol. 33, No. 9
Article Contents

PAN Anyang, SHEN Baojian, YAO Suping, TENGER, QIN Jianzhong. ADVANCES IN BIOGEOCHEMICAL STUDY OF GLYCEROL DIETHER MEMBRANE LIPIDS[J]. Marine Geology Frontiers, 2017, 33(9): 1-12. doi: 10.16028/j.1009-2722.2017.09001
Citation: PAN Anyang, SHEN Baojian, YAO Suping, TENGER, QIN Jianzhong. ADVANCES IN BIOGEOCHEMICAL STUDY OF GLYCEROL DIETHER MEMBRANE LIPIDS[J]. Marine Geology Frontiers, 2017, 33(9): 1-12. doi: 10.16028/j.1009-2722.2017.09001

ADVANCES IN BIOGEOCHEMICAL STUDY OF GLYCEROL DIETHER MEMBRANE LIPIDS

  • Compared with other lipid biomarkers, glycerol diether membrane lipids generally bear more specific implications for provenance and environment. Up to date, comprehensive reviews on this topic are rare in both domestic and international literatures. In this paper, we made a brief review on the analytical methods of glycerol diethers, the composition characteristics of archaeal diethers and bacterial diethers, with emphasis on Archaea (e.g., methanogens, methanotrophs, halophiles) and bacteria (e.g., sulfate-reducing bacteria, Aquificales, and some thermophiles).Special attention is paid to the application of glycerol diether membrane lipids and possible biogeochemical processes to the study of extreme environment, such as cold seep, hot spring and hydrothermal systems.The impacts of environmental parameters on the distribution of glycerol diether membrane lipids are briefly introduced and future application of diethers and other lipid biomarkers are discussed.

  • 加载中
  • [1] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12): 4576.

    Google Scholar

    [2] Langworthy T A, Holzer G, Zeikus J G, et al. Iso-and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune[J]. Systematic and Applied Microbiology, 1983, 4(1): 1-17. doi: 10.1016/S0723-2020(83)80029-0

    CrossRef Google Scholar

    [3] Hamilton-Brehm S D, Gibson R A, Green S J, et al. Thermodesulfobacteriumgeofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park[J]. Extremophiles, 2013, 17(2): 251-263. doi: 10.1016/S0723-2020(83)80029-0

    CrossRef Google Scholar

    [4] Huber R, Wilharm T, Huber D, et al. Aquifexpyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria[J]. Systematic and Applied Microbiology, 1992, 15(3): 340-351.

    Google Scholar

    [5] Huber R, Rossnagel P, Woese C R, et al. Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifexdegensii gen. nov. sp. nov[J]. Systematic and Applied Microbiology, 1996, 19(1): 40-49. doi: 10.1016/S0723-2020(96)80007-5

    CrossRef Google Scholar

    [6] Jahnke L L, Eder W, Huber R, et al. Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with Those ofAquificales Representatives[J]. Applied and Environmental Microbiology, 2001, 67(11): 5179-5189.

    Google Scholar

    [7] Ge L, Jiang S Y, Yang T, et al. Glycerol ether biomarkers and their carbon isotopic compositions in a cold seep carbonate chimney from the Shenhu area, northern South China Sea[J]. Chinese Science Bulletin, 2011, 56(16): 1700-1707.

    Google Scholar

    [8] Lincoln S A, Bradley A S, Newman S A, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field[J]. Organic Geochemistry, 2013, 60: 45-53.

    Google Scholar

    [9] Pan A, Yang Q, Zhou H, et al. A diagnostic GDGT signature for the impact of hydrothermal activity on surface deposits at the Southwest Indian Ridge[J]. Organic Geochemistry, 2016, 99: 90-101.

    Google Scholar

    [10] Ward D M, Brassell S C, Eglinton G. Archaebacterial lipids in hot-spring microbial mats[J]. Nature, 1985, 318(6047): 656-659. doi: 10.1038/318656a0

    CrossRef Google Scholar

    [11] Pancost R D, Pressley S, Coleman J M, et al. Lipid biomolecules in silica sinters: indicators of microbial biodiversity[J]. Environmental Microbiology, 2005, 7(1): 66-77.

    Google Scholar

    [12] Pancost R D, Pressley S, Coleman J M, et al. Composition and implications of diverse lipids in New Zealand geothermal sinters[J]. Geobiology, 2006, 4(2): 71-92.

    Google Scholar

    [13] Kaur G, Mountain B W, Pancost R D. Microbial membrane lipids in active and inactive sinters from Champagne Pool, New Zealand: elucidating past geothermal chemistry and microbiology[J]. Organic Geochemistry, 2008, 39(8): 1024-1028.

    Google Scholar

    [14] Kaur G, Mountain B W, Hopmans E C, et al. Relationship between lipid distribution and geochemical environment within Champagne Pool, Waiotapu, New Zealand[J]. Organic Geochemistry, 2011, 42(10): 1203-1215.

    Google Scholar

    [15] Xie W, Zhang C L, Wang J, et al. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables[J]. Environmental Microbiology, 2015, 17(5): 1600-1614.

    Google Scholar

    [16] Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry, 2004, 18(6): 617-628.

    Google Scholar

    [17] Schouten S, Hoefs M J L, Koopmans M P, et al. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments[J]. Organic Geochemistry, 1998, 29(5-7): 1305-1319.

    Google Scholar

    [18] Bradley A S, Hayes J M, Summons R E. Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 102-118.

    Google Scholar

    [19] Niemann H, Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Organic Geochemistry, 2008, 39(12): 1668-1677.

    Google Scholar

    [20] Lipp J S. Intact membrane lipids as tracers for microbial life in the marine deep biosphere[D]. Bremen: University of Bremen, 2008.

    Google Scholar

    [21] Rossel P E, Lipp J S, Fredricks H F, et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J]. Organic Geochemistry, 2008, 39(8): 992-999.

    Google Scholar

    [22] Koga Y, Morii H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects[J]. Bioscience, biotechnology, and biochemistry, 2005, 69(11): 2019-2034. doi: 10.1271/bbb.69.2019

    CrossRef Google Scholar

    [23] Langworthy T A. Lipids of Archaebacteria[M]. Woese, C R, Wolfe R S.Academic, New York, 1985: 459-497.https://doi.org/10.1016/S0721-9571(82)80036-7

    Google Scholar

    [24] Ferrante G, Ekiel I, Patel G B, et al. Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrixconcilii GP6[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1988, 963(2): 162-172. doi: 10.1016/0005-2760(88)90277-9

    CrossRef Google Scholar

    [25] Lai D, Springstead J R, Monbouquette H G. Effect of growth temperature on ether lipid biochemistry in Archaeoglobusfulgidus[J]. Extremophiles, 2008, 12(2): 271-278. doi: 10.1007/s00792-007-0126-6

    CrossRef Google Scholar

    [26] Koga Y, Morii H, Akagawa-Matsushita M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(2): 230-236. doi: 10.1271/bbb.62.230

    CrossRef Google Scholar

    [27] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6730): 802-805. doi: 10.1038/19751

    CrossRef Google Scholar

    [28] Hinrichs K U, Summons R E, Orphan V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31(12): 1685-1701. doi: 10.1016/S0146-6380(00)00106-6

    CrossRef Google Scholar

    [29] Orphan V J, Hinrichs K U, Ussler W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 2001, 67(4): 1922-1934.

    Google Scholar

    [30] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    CrossRef Google Scholar

    [31] Elvert M, Hopmans E C, Treude T, et al. Spatial variations of archaeal-bacterial assemblages in gas hydrate bearing sediments at a cold seep: implications from a high resolution molecular and isotopic approach[J]. Geobiology, 2005, 3: 195-209. doi: 10.1111/j.1472-4669.2005.00051.x

    CrossRef Google Scholar

    [32] Pancost R D, Hopmans E C, Sinninghe Damsté S S. Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation[J]. Geochimicaet Cosmochimica Acta, 2001, 65(10): 1611-1627. doi: 10.1016/S0016-7037(00)00562-7

    CrossRef Google Scholar

    [33] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583): 1013-1015. doi: 10.1126/science.1072502

    CrossRef Google Scholar

    [34] Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11111-11116. doi: 10.1073/pnas.0401188101

    CrossRef Google Scholar

    [35] Jaeschke A, Eickmann B, Lang S Q, et al. Biosignatures in chimney structures and sediment from the Loki's Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge[J]. Extremophiles, 2014, 18(3): 545-560. doi: 10.1007/s00792-014-0640-2

    CrossRef Google Scholar

    [36] Blumenberg M, Seifert R, Petersen S, et al. Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge[J]. Geobiology, 2007, 5(4): 435-450. doi: 10.1111/j.1472-4669.2007.00126.x

    CrossRef Google Scholar

    [37] Blumenberg M, Seifert R, Buschmann B, et al. Biomarkers reveal diverse microbial communities in black smoker sulfides from turtle pits (Mid-Atlantic Ridge, Recent) and YamanKasy (Russia, Silurian)[J]. Geomicrobiology Journal, 2012, 29(1): 66-75. doi: 10.1080/01490451.2010.523445

    CrossRef Google Scholar

    [38] Pancost R D, McClymont E L, Bingham E M, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs[J]. Organic Geochemistry, 2011, 42(10): 1279-1287. doi: 10.1016/j.orggeochem.2011.07.003

    CrossRef Google Scholar

    [39] Wagner D, Lipski A, Embacher A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582-1592. doi: 10.1111/j.1462-2920.2005.00849.x

    CrossRef Google Scholar

    [40] Lim K L H, Pancost R D, Hornibrook E R C, et al. Archaeol: an indicator of methanogenesis in water-saturated soils[J]. Archaea, 2012, 2012:1-9.

    Google Scholar

    [41] Pease T K, Van Vleet E S, Barre J S. Diphytanyl glycerol ether distributions in sediments of the Orca Basin[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3469-3479. doi: 10.1016/0016-7037(92)90391-U

    CrossRef Google Scholar

    [42] Niemann H, Elvert M, Hovland M, et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area)[J]. Biogeosciences Discussions, 2005, 2(4): 1197-1241. doi: 10.5194/bgd-2-1197-2005

    CrossRef Google Scholar

    [43] Sprott G D, Dicaire C J, Choquet C G, et al. Hydroxydi-ether lipid structures in Methanosarcina spp. and Methanococcus voltae[J]. Applied and Environmental Microbiology, 1993, 59(3): 912-914.

    Google Scholar

    [44] Sprott G D, Brisson J R, Dicaire C J, et al. A structural comparison of the total polar lipids from the human archaea Methanobrevibactersmithii and Methanosphaerastadtmanae and its relevance to the adjuvant activities of their liposomes[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1999, 1440(2/3): 275-288.

    Google Scholar

    [45] Upasani V N, Desai S G, Moldoveanu N, et al. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains[J]. Microbiology, 1994, 140(8): 1959-1966. doi: 10.1099/13500872-140-8-1959

    CrossRef Google Scholar

    [46] Rossel P E, Elvert M, Ramette A, et al. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids[J]. Geochimica et Cosmochimica Acta, 2011, 75(1): 164-184. doi: 10.1016/j.gca.2010.09.031

    CrossRef Google Scholar

    [47] Aquilina A, Knab N J, Knittel K, et al. Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes[J]. Organic Geochemistry, 2010, 41(4): 414-426.

    Google Scholar

    [48] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556

    CrossRef Google Scholar

    [49] Koga Y, Nakano M. A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny[J]. Systematic and Applied Microbiology, 2008, 31(3): 169-182. doi: 10.1016/j.syapm.2008.02.005

    CrossRef Google Scholar

    [50] Summons R E, Meyer-Dombard D R, Bradley A S, et al. New lipids from cultured archaea and environmental samples[C]//AGU Fall Meeting Abstracts, 2006.

    Google Scholar

    [51] Pancost R D, Sinninghe Damsté S S, de Lint S, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J]. Applied and Environmental Microbiology, 2000, 66(3): 1126-1132.

    Google Scholar

    [52] Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences, 2002, 99(11): 7663-7668. doi: 10.1073/pnas.072210299

    CrossRef Google Scholar

    [53] Knittel K, Lösekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental microbiology, 2005, 71(1): 467-479. doi: 10.1128/AEM.71.1.467-479.2005

    CrossRef Google Scholar

    [54] Lösekann T, Knittel K, Nadalig T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea[J]. Applied and Environmental Microbiology, 2007, 73(10): 3348-3362. doi: 10.1128/AEM.00016-07

    CrossRef Google Scholar

    [55] Ganzert L, Schirmack J, Alawi M, et al. Methanosarcinaspelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(10): 3478-3484.

    Google Scholar

    [56] Stadnitskaia A, Baas M, Ivanov M K, et al. Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea[J]. Archaea, 2003, 1(3): 165-173.

    Google Scholar

    [57] Comita P B, Gagosian R B, Pang H, et al. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcusjannaschii[J]. Journal of Biological Chemistry, 1984, 259(24): 15234-15241.

    Google Scholar

    [58] Liu X L, Lipp J S, Schröder J M, et al. Isoprenoid glycerol dialkanoldiethers: a series of novel archaeal lipids in marine sediments[J]. Organic Geochemistry, 2012, 43: 50-55. doi: 10.1016/j.orggeochem.2011.11.002

    CrossRef Google Scholar

    [59] Knappy C S, Keely B J. Novel glycerol dialkanoltriols in sediments: transformation products of glycerol dibiphytanyl glycerol tetraether lipids or biosynthetic intermediates?[J]. Chemical Communications, 2012, 48(6): 841-843.

    Google Scholar

    [60] Yang H, Pancost R D, Tang C, et al. Distributions of isoprenoid and branched glycerol dialkanoldiethers in Chinese surface soils and a loess-paleosol sequence: Implications for the degradation of tetraether lipids[J]. Organic Geochemistry, 2014, 66: 70-79. doi: 10.1016/j.orggeochem.2013.11.003

    CrossRef Google Scholar

    [61] Meador T B, Zhu C, Elling F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanoldiethers and indications for their biosynthetic origin[J]. Organic Geochemistry, 2014, 69: 70-75. doi: 10.1016/j.orggeochem.2014.02.005

    CrossRef Google Scholar

    [62] Rütters H, Sass H, Cypionka H, et al. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcinavariabilis and Desulforhabdusamnigenus[J]. Archives of Microbiology, 2001, 176(6): 435-442. doi: 10.1007/s002030100343

    CrossRef Google Scholar

    [63] Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales[J]. Archives of Microbiology, 2007, 188(6): 629-641. doi: 10.1007/s00203-007-0284-z

    CrossRef Google Scholar

    [64] Sinninghe Damsté J S, Rijpstra W I C, Geenevasen J A J, et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J]. Febs Journal, 2005, 272(16): 4270-4283. doi: 10.1111/j.1742-4658.2005.04842.x

    CrossRef Google Scholar

    [65] Ring M W, Schwr G, Thiel V, et al. Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacteriumMyxococcusxanthus[J]. Journal of Biological Chemistry, 2006, 281(48): 36691-36700. doi: 10.1074/jbc.M607616200

    CrossRef Google Scholar

    [66] Pancost R D, Bouloubassi I, Aloisi G, et al. Three series of non-isoprenoidaldialkyl glycerol diethers in cold-seep carbonate crusts[J]. Organic Geochemistry, 2001, 32(5): 695-707. doi: 10.1016/S0146-6380(01)00015-8

    CrossRef Google Scholar

    [67] Bradley A S, Fredricks H, Hinrichs K U, et al. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field[J]. Organic Geochemistry, 2009, 40(12): 1169-1178. doi: 10.1016/j.orggeochem.2009.09.004

    CrossRef Google Scholar

    [68] Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37(4): 484-500.

    Google Scholar

    [69] Zeng Y B, Ward D M, Brassell S C, et al. Biogeochemistry of hot spring environments: 2. Lipid compositions of Yellowstone (Wyoming, USA) cyanobacterial and Chloroflexus mats[J]. Chemical Geology, 1992, 95(3/4): 327-345.

    Google Scholar

    [70] Zeng Y B, Ward D M, Brassell S C, et al. Biogeochemistry of hot spring environments: 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat[J]. Chemical Geology, 1992, 95(3/4): 347-360.

    Google Scholar

    [71] Baudrand M, Grossi V, Pancost R, et al. Non-isoprenoid macrocyclic glycerol diethers associated with authigenic carbonates[J]. Organic Geochemistry, 2010, 41(12): 1341-1344. doi: 10.1016/j.orggeochem.2010.09.002

    CrossRef Google Scholar

    [72] Méhay S, Früh-Green G L, Lang S Q, et al. Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field[J]. Geobiology, 2013, 11(6): 570-592. doi: 10.1111/gbi.12062

    CrossRef Google Scholar

    [73] Guan H, Sun Y, Zhu X, et al. Factors controlling the types of microbial consortia in cold-seep environments: a molecular and isotopic investigation of authigenic carbonates from the South China Sea[J]. Chemical Geology, 2013, 354: 55-64. doi: 10.1016/j.chemgeo.2013.06.016

    CrossRef Google Scholar

    [74] Madigan M T, Martinko J M, Parker J. Brock Biology of Microorganisms, tenth ed[M]. Pearson Prentice Hall, Upper Saddle River, 2002.

    Google Scholar

    [75] Niemann H, Lösekann T, De Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854-858. doi: 10.1038/nature05227

    CrossRef Google Scholar

    [76] Kroopnick P M. The distribution of 13C of ΣCO2 in the world oceans[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1985, 32(1): 57-84. doi: 10.1016/0198-0149(85)90017-2

    CrossRef Google Scholar

    [77] Ziegenbalg S B, Birgel D, Hoffmann-Sell L, et al. Anaerobic oxidation of methane in hypersaline Messinian environments revealed by 13C-depleted molecular fossils[J]. Chemical Geology, 2012, 292: 140-148.

    Google Scholar

    [78] Naeher S, Niemann H, Peterse F, et al. Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland)[J]. Organic Geochemistry, 2014, 66: 174-181. doi: 10.1016/j.orggeochem.2013.11.002

    CrossRef Google Scholar

    [79] Hinrichs K U, Boetius A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry[M]//Ocean Margin Systems. Berlin Heidelberg: Springer, 2002: 457-477.

    Google Scholar

    [80] Londry K L, Jahnke L L, Des Marais D J. Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2004, 70(2): 745-751.

    Google Scholar

    [81] Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9): 2287-2298. doi: 10.1111/j.1462-2920.2008.01653.x

    CrossRef Google Scholar

    [82] Schouten S, Hopmans E C, Sinninghe Damsté S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006

    CrossRef Google Scholar

    [83] Russell N J. Mechanisms of thermal adaptation in bacteria: blueprints for survival[J]. Trends in Biochemical Sciences, 1984, 9(3): 108-112.

    Google Scholar

    [84] Kaur G, Mountain B W, Stott M B, et al. Temperature and pH control on lipid composition of silica sinters from diverse hot springs in the Taupo Volcanic Zone, New Zealand[J]. Extremophiles, 2015, 19(2): 327-344. doi: 10.1007/s00792-014-0719-9

    CrossRef Google Scholar

    [85] Sprott G D, Meloche M, Richards J C. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcusjannaschii grown at different temperatures[J]. Journal of Bacteriology, 1991, 173(12): 3907-3910. doi: 10.1128/JB.173.12.3907-3910.1991

    CrossRef Google Scholar

    [86] Uda I, Sugai A, Itoh Y H, et al. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature[J]. Lipids, 2001, 36(1): 103-105. doi: 10.1007/s11745-001-0914-2

    CrossRef Google Scholar

    [87] Kaneshiro S M, Clark D S. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii[J]. Journal of Bacteriology, 1995, 177(13): 3668-3672. doi: 10.1128/JB.177.13.3668-3672.1995

    CrossRef Google Scholar

    [88] DeLong E F, Yayanos A A. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes[J]. Applied and Environmental Microbiology, 1986, 51(4): 730-737.

    Google Scholar

    [89] Wirsen C O, Jannasch H W, Wakeham S G, et al. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium[J]. Current Microbiology, 1986, 14(6): 319-322. doi: 10.1007/BF01568697

    CrossRef Google Scholar

    [90] Saito R, Oba M, Kaiho K, et al. Ether lipids from the Lower and Middle Triassic at Qingyan, Guizhou Province, Southern China[J]. Organic Geochemistry, 2013, 58: 27-42. doi: 10.1016/j.orggeochem.2013.02.002

    CrossRef Google Scholar

    [91] Turich C, Freeman K H. Archaeal lipids record paleosalinity in hypersaline systems[J]. Organic Geochemistry, 2011, 42(9): 1147-1157.

    Google Scholar

    [92] Thiel V, Toporski J, Schumann G, et al. Analysis of archaeal core ether lipids using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS): Exploring a new prospect for the study of biomarkers in geobiology[J]. Geobiology, 2007, 5(1): 75-83.

    Google Scholar

    [93] Blumenberg M, Seifert R, Nauhaus K, et al. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat[J]. Applied and environmental microbiology, 2005, 71(8): 4345-4351. doi: 10.1128/AEM.71.8.4345-4351.2005

    CrossRef Google Scholar

    [94] Friedrich M W. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes[J]. Current Opinion in Biotechnology, 2006, 17(1): 59-66. doi: 10.1016/j.copbio.2005.12.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(1094) PDF downloads(39) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint