2020 Vol. 36, No. 4
Article Contents

TIAN Bo, LIU Zongbin, LIU Chao, ZHANG Rui, ZHANG Xuefang. QUANTITATIVE IDENTIFICATION OF CONFIGURATION INTERFACE FOR OFFSHORE DELTA RESERVOIR AND RESIDUAL OIL PREDICTION[J]. Marine Geology Frontiers, 2020, 36(4): 68-75. doi: 10.16028/j.1009-2722.2019.155
Citation: TIAN Bo, LIU Zongbin, LIU Chao, ZHANG Rui, ZHANG Xuefang. QUANTITATIVE IDENTIFICATION OF CONFIGURATION INTERFACE FOR OFFSHORE DELTA RESERVOIR AND RESIDUAL OIL PREDICTION[J]. Marine Geology Frontiers, 2020, 36(4): 68-75. doi: 10.16028/j.1009-2722.2019.155

QUANTITATIVE IDENTIFICATION OF CONFIGURATION INTERFACE FOR OFFSHORE DELTA RESERVOIR AND RESIDUAL OIL PREDICTION

  • After the S Oilfield in Bohai enters its high water cut period, the intra-layer contradiction becomes more prominent, and the distribution of remaining oil under the control of reservoir internal structure becomes more complicated. Aiming at the problem that the interface of delta facies configuration is not able to be effectively identified, based on the data from sealed coring wells, the concept of GR return rate is introduced by the authors in this paper. Through the calibration of core and electrical logging curves, the quantitative identification chart of interface of different configurations in a composite estuary bar is established, and the distribution pattern of interface of configurations in layer is defined. The dip angle, width and extension range are quantitatively described. The results show that there are two main types of configurational interfaces with certain shielding capacity in estuary bars: superimposed horizontal interface (Grade 4) in the composite bar and oblique front interface (Grade 3) in the single bar. Among them, the control of the remaining oil by the Grade 4 interface is mainly vertical occlusion and top enrichment, while the control of the Grade 3 interface is mainly lateral occlusion and local enrichment. In view of the different remaining oil distribution patterns mentioned above, the adjustment strategies of "oil prospecting on water" and "oil digging under water" by means of horizontal wells are proposed respectively, which can effectively improve the in-formation utilization of thick estuary bar sand bodies, and have a strong guiding significance for the later adjustment of similar high water cut old oilfields.

  • 加载中
  • [1] 李岩.扇三角洲前缘储层构型及其控油作用——以赵凹油田赵凹区块核桃园组三段Ⅳ31厚油层为例[J].岩性油气藏, 2017, 29(3):132-139.

    Google Scholar

    [2] 吴胜和, 翟瑞, 李羽鹏.地下储层构型表征:现状与展望[J].地学前缘, 2012, 19(2):15-21.

    Google Scholar

    [3] 林煜, 吴胜和, 岳大力, 等.扇三角洲前缘储层构型精细解剖——以辽河油田曙2-6-6区块杜家台油层为例[J].天然气地球科学, 2013, 24(2):335-344.

    Google Scholar

    [4] 温立峰, 吴胜和, 王延忠, 等.河控三角洲河口坝地下储层构型精细解剖方法[J].中南大学学报(自然科学版), 2011, 42(4):1072-1078.

    Google Scholar

    [5] 辛治国.河控三角洲河口坝构型分析[J].地质论评, 2008, 54(4):527-531, 581. doi: 10.3321/j.issn:0371-5736.2008.04.012

    CrossRef Google Scholar

    [6] 李云海, 吴胜和, 李艳平, 等.三角洲前缘河口坝储层构型界面层次表征[J].石油天然气学报, 2007, 29(6):49-52, 170. doi: 10.3969/j.issn.1000-9752.2007.06.011

    CrossRef Google Scholar

    [7] 徐丽强, 李胜利, 于兴河, 等.辫状河三角洲前缘储层构型分析[J].油气地质与采收率, 2016, 23(5):50-56. doi: 10.3969/j.issn.1009-9603.2016.05.008

    CrossRef Google Scholar

    [8] 张友, 侯加根, 曹彦清, 等.基于构型单元的储层质量分布模式——以胜坨油田二区沙二段8砂组厚层河口坝砂体为例[J].石油与天然气地质, 2015, 36(5):862-871.

    Google Scholar

    [9] Deveugle P E K, Jackson M D, Hampson G J, et al. Characterization of stratigraphic architecture and its impact on fluid flow in a fluvial dominated deltaic reservoir analog: upper Cretaceous Ferron Sandstone Member, Utah[J]. AAPG Bulletin, 2011, 95(5): 693-727. doi: 10.1306/09271010025

    CrossRef Google Scholar

    [10] Purkait B, Majumdar D D. Distinguishing different sedimentary facies in a deltaic system[J]. Sedimentary Geology, 2014, 308: 53-62. doi: 10.1016/j.sedgeo.2014.05.001

    CrossRef Google Scholar

    [11] 马平华, 邵先杰, 霍春亮, 等.绥中36-1油田东二下段沉积演化及对油气的控制作用[J].特种油气藏, 2010, 17(3):45-47, 60, 122.

    Google Scholar

    [12] 赵靖康, 高红立, 邱婷.利用水平井挖潜底部强水淹的厚油层剩余油[J].断块油气田, 2011, 18(6):776-779.

    Google Scholar

    [13] 刘宗宾, 张汶, 马奎前, 等.海上稠油油田剩余油分布规律及水平井挖潜研究——以渤海XX油田为例[J].石油天然气学报, 2013, 35(5):116-117.

    Google Scholar

    [14] Wu S H, Yue D L, Liu J M, et al. Hierarchy modeling of sub-surface palaeochannel reservoir architecture[J]. Science in China(Series D):Earth Sciences, 2008, 51(Suppl 2):126-137.

    Google Scholar

    [15] Miall A D.The Geology of fluvial deposits[M].Heidelberg: Springer-Verlag, 1996.75-178.

    Google Scholar

    [16] Miall A D.Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservior development: a reslity check[J].AAPG Bulletin, 2006, 90(7): 989-1002. doi: 10.1306/02220605065

    CrossRef Google Scholar

    [17] 张春生, 刘忠保, 施冬, 等.三角洲分流河道及河口坝形成过程的物理模拟[J].地学前缘, 2000, 7(3):168-176.

    Google Scholar

    [18] 韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J].石油勘探与开发, 2010, 37(5):583-591.

    Google Scholar

    [19] 箭晓卫, 赵伟.喇嘛甸油田特高含水期厚油层内剩余油描述及挖潜技术[J].大庆石油地质与开发, 2006, 25(5):31-33, 121.

    Google Scholar

    [20] 徐安娜, 穆龙新, 裘怿楠.中国不同沉积类型储集层中的储量和可动剩余油分布规律[J].石油勘探与开发, 1998, 25(5): 41-44.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(556) PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint