2017 Vol. 37, No. 4
Article Contents

Zhang Guowei, Li Sanzhong. West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17. doi: 10.16562/j.cnki.2056-1492.2017.04.001
Citation: Zhang Guowei, Li Sanzhong. West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17. doi: 10.16562/j.cnki.2056-1492.2017.04.001

West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates

More Information
  • The Indian Ocean and the West Pacific Ocean as well as the ocean-continent connection zones in between constitute the core of "The Belt and Road" Program. In-depth scientific understanding of the natural environment, mineral resources, geo-hazard distribution, energy potential and other geoscientific problems of the region is critical for the earth science communities to well serve the urgent needs of the region. This paper mainly discusses the following key scientific issues in the West Pacific and North Indian oceans and their connection zones: 1, modern marine geodynamic problems related to the two oceans. Based on the research and development needs in the two oceans and the ocean-continent transitional zones, this item includes the following questions: (1) origin, growth, death and evolution of plates involving the two oceans, for example, ① the initial origin and process of the triangle Pacific Plate, including the origin and difference of the Galapagos and West Shatsky micro-plates; ② spatial and temporal evolution, current status and future trends of the plates in the paleo- or present Pacific Ocean and their impacts on the evolution of the East Asian Continent Domain; ③ origin and evolution of the Indian Ocean and the formation and break of related supercontinents. (2) the latest progress in the research of mid-oceanic ridges and related problems: ① the ridge- hotspot interaction and ridge accretion, the relationship between vertical accretion behavior in scales of thousands years or tens of thousands years and lateral spreading in scale of millions years at the mid-oceanic ridges aged 0 Ma; ② differences in the formation mechanisms between back-arc basin extension and normal mid-oceanic ridge spreading; ③differences between the spreading of ultra-slow Indian Ocean and rapid Pacific, differences between active and passive spreading, and the push force onto the mid-oceanic ridges; ④ mid-oceanic ridge jumping and spreading termination: causes of the intra-oceanic plate reorganization, termination, and spatial jumps; ⑤ the interaction between mantle plume and mid-oceanic ridge. (3) intra-oceanic subduction and tectonics: ① the origin of intra-oceanic arc and subduction, ridge subduction and slab windows at continental margins, transform faults and transform-type continental margin; ② origins of large igneous provinces, oceanic plateaus and seamounts chains. (4) oceanic core complex and rheology of oceanic crusts in the Indian Ocean. (5) research advances in the driving force within oceanic plates, including mantle convection, negative buoyancy, trench sunction and mid- oceanic ridge push etc. 2, ocean-continent connection zones between the two oceans, including: (1) properties of continental margin basement, for example, if the crusts of the Okinawa Trough, the Okhotsk Sea, and east of New Zealand are continental crust or oceanic crust, and the origin of micro-continent in oceans; (2) the process of ocean-continent transition and coupling, comparison of major events between the West Pacific Ocean seamount chains and continental margins, mantle exhumation and the ocean-continent transition zones, origins of transform fault within backarc basins, formation and subduction of transform-type continental margins; (3) strike-slip faulting between the West Pacific Ocean and the East Asian Continent and its temporal and spatial range and scale; (4) connection between deep and surface processes within the two oceans and their connection zones, namely the assembly among the Eurasian, Pacific and India-Australia plates and the related effect from the deep mantle, lithosphere, to crust and surface Earth system, and some related issues within the connection zones of the two oceans under the super-convergent background. 3, relationship, especially their present relationship among the Paleo- or Present Pacific plates, the Tethyan Belt, the Eurasian Plate or the plates within the Indian Ocean and their evolutionary trends. At last, this paper makes a perspective on the development of marine geology in the two oceans and one zone.

  • 加载中
  • [1] Hou Z Q, Zhang H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026

    CrossRef Google Scholar

    [2] Richards J P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision[J]. Ore Geology Reviews, 2015, 70: 323-345. doi: 10.1016/j.oregeorev.2014.11.009

    CrossRef Google Scholar

    [3] Deng J, Wang Q F, Li G J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, doi: 10.1016/j.gr.2017.02.005. (inPress)

    CrossRef Google Scholar

    [4] 甘克文.特提斯域的演化和油气分布[J].海相油气地质, 2000, 5(3-4): 21-29.

    Google Scholar

    GAN Kewen. The Tethys evolution and hydrocarbon distribution[J]. Marine Origin Petroleum Geology, 2000, 5(3-4): 21-29.

    Google Scholar

    [5] 丘东洲, 谢渊, 李晓清, 等.亚洲特提斯域岩相古地理与油气聚集地质特征[J].海相油气地质, 2009, 14(2): 41-51. doi: 10.3969/j.issn.1672-9854.2009.02.006

    CrossRef Google Scholar

    QIU Dongzhou, XIE Yuan, LI Xiaoqing, et al. Geological characteristics of lithofacies paleogeography and hydrocarbon accumulation in Asian Tethyan tectonic domain[J]. Marine Origin Petroleum Geology, 2009, 14(2): 41-51. doi: 10.3969/j.issn.1672-9854.2009.02.006

    CrossRef Google Scholar

    [6] 姜素华, 高嵩, 李三忠, 等.西太平洋洋-陆过渡带重磁异常与构造格架[J].地学前缘, 2017, 24(4): 152-170.

    Google Scholar

    JIANG Suhua, GAO Song, LI Sanzhong, et al. Gravity-magnetic anomaly and tectonic units in West Pacific Continent-Ocean Connection Zone[J]. Earth Science Frontiers, 2017, 24(4):152-170.

    Google Scholar

    [7] Li S Z, Santosh M, Zhao G C, et al. Intracontinental deformation in a frontier of super-convergence: a perspective on the tectonic milieu of the South China Block[J]. Journal of Asian Earth Sciences, 2012, 49: 313-329. doi: 10.1016/j.jseaes.2011.07.026

    CrossRef Google Scholar

    [8] Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific Basin[J]. The Geological Society of America, Special Paper, 1985, 206: 1-59.

    Google Scholar

    [9] Müller R D, Sdrolias M, Gaina C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics[J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540

    CrossRef Google Scholar

    [10] Vine F J, Matthews D H. Magnetic anomalies over oceanic ridges[J]. Nature, 1963, 199(4897): 947-949. doi: 10.1038/199947a0

    CrossRef Google Scholar

    [11] Vine F J, Wilson J T. Magnetic anomalies over a young oceanic ridge off Vancouver Island[J]. Science, 1965, 150(3965): 485-489.

    Google Scholar

    [12] Zhu G, Jiang D Z, Zhang B L, et al. 2012. Destruction of the eastern North China Craton in a Backarc setting: evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005

    CrossRef Google Scholar

    [13] Huang L, Liu C Y, Kusky T M. Cenozoic evolution of the Tan-Lu Fault Zone (East China)—Constraints from seismic data[J]. Gondwana Research, 2015, 28(3): 1079-1095. doi: 10.1016/j.gr.2014.09.005

    CrossRef Google Scholar

    [14] Suo Y H, Li S Z, Yu S, et al. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin[J]. Journal of Asian Earth Sciences, 2014, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019

    CrossRef Google Scholar

    [15] Suo Y H, Li S Z, Zhao S J, et al. Continental Margin Basins in East Asia: tectonic implications of the Meso-Cenozoic East China Sea pull-apart Basins[J]. Geological Journal, 2015, 50(2): 139-156. doi: 10.1002/gj.2535

    CrossRef Google Scholar

    [16] 索艳慧, 李三忠, 曹现志, 等.中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J].地学前缘, 2017, 24(4): 249-267.

    Google Scholar

    SUO Yanhui, LI Sanzhong, CAO Xianzhi, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontier, 2017, 24(4):249-267.

    Google Scholar

    [17] Liu X, Zhao D P, Li S Z, et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth and Planetary Science Letters, 2017, 464: 166-174. doi: 10.1016/j.epsl.2017.02.024

    CrossRef Google Scholar

    [18] 金宠, 李三忠, 王岳军, 等.雪峰山陆内复合构造系统印支—燕山期构造穿时递进特征[J].石油与天然气地质, 2009, 30(5): 598-607. doi: 10.3321/j.issn:0253-9985.2009.05.010

    CrossRef Google Scholar

    JIN Chong, LI Sanzhong, WANG Yuejun, et al. Dischronous and progressive deformation during the Indosinian Yanshanian Movements of the Xuefeng Mountain intracontinental composite tectonic system[J]. Oil & Gas Geology, 2009, 30(5): 598-607. doi: 10.3321/j.issn:0253-9985.2009.05.010

    CrossRef Google Scholar

    [19] 张国伟, 郭安林, 王岳军, 等.中国华南大陆构造与问题[J].中国科学:地球科学, 2013, 43(10): 1553-1582.

    Google Scholar

    ZHANG Guowei, GUO Anlin, WANG Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 2013, 43(10):1553-1582.

    Google Scholar

    [20] 张剑, 李三忠, 李玺瑶, 等.鲁西地区燕山期构造变形:古太平洋板块俯冲的构造响应[J].地学前缘, 2017, 24(4): 226-238.

    Google Scholar

    ZHANG Jian, LI Sanzhong, LI Xiyao, et al. Yanshanian deformation of the Luxi area: tectonic response to the Paleo-Pacific Plate subduction[J]. Earth Science Frontiers, 2017, 24(4):226-238.

    Google Scholar

    [21] 郭润华, 李三忠, 索艳慧, 等.华北地块楔入大华南地块和印支期弯山构造[J].地学前缘, 2017, 24(4): 171-184.

    Google Scholar

    GUO Runhua, LI Sanzhong, SUO Yanhui, et al. Indentation of North China Block into Greater South China Block and Indosinian Orocline[J]. Earth Science Frontiers, 2017, 24(4):171-184.

    Google Scholar

    [22] Niu Y L, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective[J]. Journal of Petrology, 2003, 44(5): 851-886. doi: 10.1093/petrology/44.5.851

    CrossRef Google Scholar

    [23] Hilde T W C, Uyeda S, Kroenke L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38(1-2): 145-152, 155-165. doi: 10.1016/0040-1951(77)90205-0

    CrossRef Google Scholar

    [24] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533-542. doi: 10.1016/j.epsl.2007.08.021

    CrossRef Google Scholar

    [25] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    CrossRef Google Scholar

    [26] Kinoshita O. Possible manifestations of slab window magmatisms in Cretaceous southwest Japan[J]. Tectonophysics, 2002, 344(1-2): 1-13. doi: 10.1016/S0040-1951(01)00262-1

    CrossRef Google Scholar

    [27] 张旗, 王焰, 钱青, 等.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J].岩石学报, 2001, 17(2): 236-244.

    Google Scholar

    ZHANG Qi, WANG Yan, QIAN Qing, et al. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China[J]. Acta Petrologica Sinica, 2001, 17(2): 236-244.

    Google Scholar

    [28] 张旗, 王元龙, 金惟俊, 等.晚中生代的中国东部高原:证据、问题和启示[J].地质通报, 2008, 27(9): 1404-1430. doi: 10.3969/j.issn.1671-2552.2008.09.004

    CrossRef Google Scholar

    ZHANG Qi, WANG Yuanlong, JIN Weijun, et al. Eastern China Plateau during the Late Mesozoic: evidence, problems and implication[J]. Geological Bulletin of China, 2008, 27(9): 1404-1430. doi: 10.3969/j.issn.1671-2552.2008.09.004

    CrossRef Google Scholar

    [29] Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3-4): 481-497. doi: 10.1016/S0012-821X(03)00167-5

    CrossRef Google Scholar

    [30] Liu B, Li S Z, Suo Y H, et al. The geological nature and geodynamics of the Okinawa Trough, western Pacific[J]. Geological Journal, 2016, 51(S1): 416-428.

    Google Scholar

    [31] 索艳慧, 李三忠, 戴黎明, 等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报, 2012, 28(8): 2602-2618.[

    Google Scholar

    SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8): 2602-2618.

    Google Scholar

    [32] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3): 65-94.

    Google Scholar

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian continental magin[J]. Marine Geology & Quaternary Geology, 2013, 33(3):65-94.

    Google Scholar

    [33] McAdoo D C, Sandwell D T. Folding of oceanic lithosphere[J]. Journal of Geophysical Research, 1985, 90(B10): 8563-8569. doi: 10.1029/JB090iB10p08563

    CrossRef Google Scholar

    [34] Cloetingh S, Wortel R. Stress in the Indo-Australian plate[J]. Tectonophysics, 1986, 132(1-3): 49-67. doi: 10.1016/0040-1951(86)90024-7

    CrossRef Google Scholar

    [35] Maruyama S. Plume tectonics[J]. The Journal of the Geological Society of Japan, 1994, 100(1): 24-49. doi: 10.5575/geosoc.100.24

    CrossRef Google Scholar

    [36] Yang Y T. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013, 126: 96-115. doi: 10.1016/j.earscirev.2013.07.010

    CrossRef Google Scholar

    [37] 王鹏程, 赵淑娟, 李三忠, 等.长江中下游南部逆冲变形样式及其机制[J].岩石学报, 2015, 31(1): 230-244.

    Google Scholar

    WANG Pengcheng, ZHAO Shujuan, LI Sanzhong, et al. The styles and dynamics of thrust in the south of the Middle-Lower Yangtze River area, China[J]. Acta Petrologica Sinica, 2015, 31(1): 230-244.

    Google Scholar

    [38] Replumaz A, Capitanio F A, Guillot S, et al. The coupling of Indian subduction and Asian continental tectonics[J]. Gondwana Research, 2014, 26(2): 608-626. doi: 10.1016/j.gr.2014.04.003

    CrossRef Google Scholar

    [39] Gibbons A D, Zahirovic S, Mu?ller R D, et al. Tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[J]. Gondwana Research, 2015, 28(2): 451-492. doi: 10.1016/j.gr.2015.01.001

    CrossRef Google Scholar

    [40] Zahirovic S, Müller R D, Seton M, et al. Tectonic speed limits from plate kinematic reconstructions[J]. Earth and Planetary Science Letters, 2015, 418: 40-52. doi: 10.1016/j.epsl.2015.02.037

    CrossRef Google Scholar

    [41] Zahirovic S, Matthews K J, Flament N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth-Science Reviews, 2016, 162: 293-337. doi: 10.1016/j.earscirev.2016.09.005

    CrossRef Google Scholar

    [42] Davies G F. Mantle Convection for Geologists[M]. Cambridge: Cambridge University Press, 2011.

    Google Scholar

    [43] Van Orman J, Cochran J R, Weissel J K, et al. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean[J]. Earth and Planetary Science Letters, 1995, 133(1-2): 35-46. doi: 10.1016/0012-821X(95)00061-G

    CrossRef Google Scholar

    [44] Bull J M, Scrutton R A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere[J]. Nature, 1990, 344(6269): 855-858. doi: 10.1038/344855a0

    CrossRef Google Scholar

    [45] Royer J Y, Sandwell D T. Evolution of the eastern Indian Ocean since the Late Cretaceous: constraints from Geosat altimetry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13755-13782. doi: 10.1029/JB094iB10p13755

    CrossRef Google Scholar

    [46] Delescluse M, Montési L G J, Chamot-Rooke N. Fault reactivation and selective abandonment in the oceanic lithosphere[J]. Geophysical Research Letters, 2008, 35(16): L16312.

    Google Scholar

    [47] Chamot-Rooke N, Jestin F, De Voogd B. Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile[J]. Geology, 1993, 21(11): 1043-1046. doi: 10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2

    CrossRef Google Scholar

    [48] Bull J M, Scrutton R A. Seismic reflection images of intraplate deformation, Central Indian Ocean, and their tectonic significance[J]. Journal of the Geological Society, 1992, 149(6): 955-966. doi: 10.1144/gsjgs.149.6.0955

    CrossRef Google Scholar

    [49] Yue H, Lay T, Koper K D. En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes[J]. Nature, 2012, 490(7419): 245-249. doi: 10.1038/nature11492

    CrossRef Google Scholar

    [50] Meng L, Ampuero J P, Stock J, et al. Earthquake in a maze: compressional rupture branching during the 2012 M w 8.6 Sumatra earthquake[J]. Science, 2012, 337(6095): 724-726. doi: 10.1126/science.1224030

    CrossRef Google Scholar

    [51] 李三忠, 索艳慧, 余珊, 等.西南印度洋构造地貌与构造过程[J].大地构造与成矿学, 2015, 39(1): 15-29. doi: 10.3969/j.issn.1001-1552.2015.01.002

    CrossRef Google Scholar

    LI Sanzhong, SUO Yanhui, YU Shan, et al. Morphotectonics and tectonic processes of the Southwest Indian Ocean[J]. Geotectonica et Metallogenia, 2015, 39(1): 15-29. doi: 10.3969/j.issn.1001-1552.2015.01.002

    CrossRef Google Scholar

    [52] 李三忠, 索艳慧, 刘鑫, 等.印度洋构造过程重建与成矿模式:西南印度洋洋中脊的启示[J].大地构造与成矿学, 2015, 39(1): 30-43. doi: 10.3969/j.issn.1001-1552.2015.01.003

    CrossRef Google Scholar

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Morphotectonics and tectonic processes of the Southwest Indian Ocean[J]. Geotectonica et Metallogenia, 2015, 39(1): 30-43. doi: 10.3969/j.issn.1001-1552.2015.01.003

    CrossRef Google Scholar

    [53] Sager W W, Bull J M, Krishna K S. Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4648-4668. doi: 10.1002/jgrb.50319

    CrossRef Google Scholar

    [54] Honza E, Fujioka K. Formation of arcs and backarc basins inferred from the tectonic evolution of southeast Asia since the Late Cretaceous[J]. Tectonophysics, 2004, 384(1-4): 23-53. doi: 10.1016/j.tecto.2004.02.006

    CrossRef Google Scholar

    [55] 秦蕴珊, 尹宏.西太平洋——我国深海科学研究的优先战略选区[J].地球科学进展, 2011, 26(3): 245-248.

    Google Scholar

    QIN Yunshan, YIN Hong. Western Pacific: The strategic priority in China deep-sea research[J]. Advances in Earth Science, 2011, 26(3):245-248.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(4863) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint