2019 Vol. 39, No. 1
Article Contents

CHENG Ke, WANG Qing, ZHENG Zhihui, ZHAN Chao, ZHOU Houyun, CHI Hong. Seasonal variations in trace elements and influencing factors in drip water from Kaiyuan Cave, Shandong Province[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 154-162. doi: 10.16562/j.cnki.0256-1492.2017032801
Citation: CHENG Ke, WANG Qing, ZHENG Zhihui, ZHAN Chao, ZHOU Houyun, CHI Hong. Seasonal variations in trace elements and influencing factors in drip water from Kaiyuan Cave, Shandong Province[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 154-162. doi: 10.16562/j.cnki.0256-1492.2017032801

Seasonal variations in trace elements and influencing factors in drip water from Kaiyuan Cave, Shandong Province

More Information
  • Drip water samples for 15 months were collected from the Kaiyuan Cave, Zibo City of Shandong Province, a cave located in a semi-humid monsoon climatic zone in coastal North China. Geochemical information suggests that: (1) the variations in dripping rates respond rapidly to the atmospheric precipitation outside the cave. (2) Although the Ca2+, Mg2+, Sr2+ and Ba2+ concentrations display significant seasonal variations, their behaviors and influencing mechanisms are rather different. (3) The Sr/Ca and Ba/Ca ratios of the drip water may respond to certain degree to the atmospheric precipitation outside of the cave, and, especially, the Mg/Ca, Sr/Ca and Mg/Sr ratios may well indicate heavy rainfall. However, the variations in Mg/Sr in the drip water do not respond obviously to surface air temperature.

  • 加载中
  • [1] Verheyden S, Keppens E, Fairchild I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions[J]. Chemical Geology, 2000, 169:131-144. doi: 10.1016/S0009-2541(00)00299-0

    CrossRef Google Scholar

    [2] Johnson K R, Hu C Y, Belshaw N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2006, 244:394-407. doi: 10.1016/j.epsl.2006.01.064

    CrossRef Google Scholar

    [3] 张美良, 朱晓燕, 林玉石, 等.洞穴滴(流)水的沉积及溶—侵蚀作用——以桂林盘龙洞为例[J].中国岩溶, 2007, 26(4):326-333. doi: 10.3969/j.issn.1001-4810.2007.04.009

    CrossRef Google Scholar

    ZHANG Meiliang, ZHU Xiaoyan, LIN Yushi, et al. Drip water deposits and erosion-dissolution process by drip water in karst cave——Taking the Panlong cave as an example[J]. Carsologica Sinica, 2007, 26(4):326-333. doi: 10.3969/j.issn.1001-4810.2007.04.009

    CrossRef Google Scholar

    [4] Cobb K M, Adkins J F, Partin J W, et al. Regional-scale climate influences on temporal variations of rainwater and cave dripwater oxygen isotopes in northern Borneo[J]. Earth and Planetary Science Letters, 2007, 263:207-220. doi: 10.1016/j.epsl.2007.08.024

    CrossRef Google Scholar

    [5] 蒲俊兵, 沈立成, 王翱宇, 等.重庆丰都雪玉洞水文地球化学指标的时空变化研究[J].中国岩溶, 2009, 28(1):49-54. doi: 10.3969/j.issn.1001-4810.2009.01.009

    CrossRef Google Scholar

    PU Junbing, SHEN Licheng, WANG Aoyu, et al. Space-time variation of hydro-geochemistry index of the Xueyu cave system in Fengdu county, Chongqing[J]. Carsologica Sinica, 2009, 28(1):49-54. doi: 10.3969/j.issn.1001-4810.2009.01.009

    CrossRef Google Scholar

    [6] Bradley C, Baker A, Jex C N, et al. Hydrological uncertainties in the modelling of cave drip-water δ18O and the implications for stalagmite palaeoclimate reconstructions[J]. Quaternary Science Reviews, 2010, 29:2201-2214. doi: 10.1016/j.quascirev.2010.05.017

    CrossRef Google Scholar

    [7] 张美良, 朱晓燕, 吴夏, 等.桂林洞穴滴水与现代碳酸钙δ18O记录的环境意义——以桂林七星岩NO.15支洞为例[J].沉积学报, 2015, 33(4):697-705.

    Google Scholar

    ZHANG Meiliang, ZHU Xiaoyan, WU Xia, et al. Environmental significance of δ18O record from cave drip water and recent carbonate deposit at No.15 Branching Cave of Seven Star Cave in Guilin[J]. Acta Sedimentologica Sinica, 2015, 33(4):697-705.

    Google Scholar

    [8] Breitenbach S F M, Lechleitner F A, Meyer H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting-a monitoring study from NE India[J]. Chemical Geology, 2015, 402:111-124. doi: 10.1016/j.chemgeo.2015.03.011

    CrossRef Google Scholar

    [9] Fairchild I J, Baker A, Borsato A, et al. Annual to sub-annual resolution of multiple trace-element trends in speleothems[J]. Journal of the Geological Society, 2001, 158:831-841. doi: 10.1144/jgs.158.5.831

    CrossRef Google Scholar

    [10] Treble P, Shelley J M G, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216:141-153. doi: 10.1016/S0012-821X(03)00504-1

    CrossRef Google Scholar

    [11] Tremaine D M, Froelich P N. Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite[J]. Geochimica et Cosmochimica Acta, 2013, 121:522-545. doi: 10.1016/j.gca.2013.07.026

    CrossRef Google Scholar

    [12] Casteel R C, Banner J L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies[J]. Chemical Geology, 2015, 392:43-58. doi: 10.1016/j.chemgeo.2014.11.002

    CrossRef Google Scholar

    [13] Rau G C, Cuthbert M O, Andersen M S, et al. Controls on cave drip water temperature and implications for speleothem-based paleoclimate reconstructions[J]. Quaternary Science Reviews, 2015, 127:19-36. doi: 10.1016/j.quascirev.2015.03.026

    CrossRef Google Scholar

    [14] Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008, 269:80-95. doi: 10.1016/j.epsl.2008.01.051

    CrossRef Google Scholar

    [15] Mattey D P, Fairchild I J, Atkinson T C, et al. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar[J]. Geological Society, London, Special Publications, 2010, 336:323-344. doi: 10.1144/SP336.17

    CrossRef Google Scholar

    [16] Ruan J Y, Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China[J]. Chinese Science Bulletin, 2010, 55(34):3929-3935. doi: 10.1007/s11434-010-4193-1

    CrossRef Google Scholar

    [17] Huang Y M, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy) [J]. Chemical Geology, 2001, 175:429-448. doi: 10.1016/S0009-2541(00)00337-5

    CrossRef Google Scholar

    [18] 衣成城, 李延勇, 李俊云, 等.芙蓉洞洞穴水离子浓度和元素比值变化特征及其环境意义[J].中国岩溶, 2011, 30(2):200-207. doi: 10.3969/j.issn.1001-4810.2011.02.013

    CrossRef Google Scholar

    YI Chengcheng, LI Tingyong, LI Junyun, et al. The variation of element ratio and ion concentration of cave water in the Furong Cave and their implications for environment research[J]. Carsologica Sinica, 2011, 30(2):200-207. doi: 10.3969/j.issn.1001-4810.2011.02.013

    CrossRef Google Scholar

    [19] Baldini J U L, Mcdermott F, Fairchild I J. Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records[J]. Chemical Geology, 2006, 235:390-404. doi: 10.1016/j.chemgeo.2006.08.005

    CrossRef Google Scholar

    [20] Borsato A, Johnston V E, Frisia S, et al. Temperature and altitudinal influence on karst dripwater chemistry: Implications for regional-scale palaeoclimate reconstructions from speleothems[J]. Geochimica et Cosmochimica Acta, 2016, 177:275-297. doi: 10.1016/j.gca.2015.11.043

    CrossRef Google Scholar

    [21] Casteel R C, Banner J L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies[J]. Chemical Geology, 2015, 392:43-58. doi: 10.1016/j.chemgeo.2014.11.002

    CrossRef Google Scholar

    [22] Duan W H, Ruan J Y, Luo W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183:250-266. doi: 10.1016/j.gca.2016.03.037

    CrossRef Google Scholar

    [23] Hu C Y, Henderson G M, Huang J H, et al. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International Journal of Speleology, 2008, 37(3):143-151. doi: 10.5038/1827-806X.37.3.1

    CrossRef Google Scholar

    [24] 周厚云, 王庆, 蔡炳贵.山东开元洞发现典型"北方型"石笋微生长层[J].第四纪研究, 2010, 30(2):441-442.

    Google Scholar

    ZHOU Houyun, WANG Qing, CAI Binggui. Typical northern type speleothem Micro-layers found in stalagmite KY1 collected from Kaiyuan Cave in Shandong Province, North China[J]. Quaternary Sciences, 2010, 30(2):441-442.

    Google Scholar

    [25] 王庆, 周厚云, 迟宏, 等.最近千年来山东半岛西部气候环境变化的石笋δ18O、δ13C记录(Ⅰ)[J].海洋地质与第四纪地质, 2015, 35(5):135-142.

    Google Scholar

    WANG Qing, ZHOU Houyun, CHI Hong, et al. The stalagmite records of climate and environment change on the western Shandong Peninsula during the past 1000 years: δ18O and δ13C values(I)[J]. Marine Geology & Quaternary Geology, 2015, 35(5):135-142.

    Google Scholar

    [26] Wang Q, Zhou H Y, Cheng K, et al. The climate reconstruction in Shandong Peninsula, northern China, during the last millennium based on stalagmite laminae together with a comparison to δ18O[J]. Climate of the Past, 2016, 12:871-881. doi: 10.5194/cp-12-871-2016

    CrossRef Google Scholar

    [27] Baker A, Genty D. Fluorescence wavelength and intensity variations of cave waters[J]. Journal of Hydrology, 1999, 217:19-34. doi: 10.1016/S0022-1694(99)00010-4

    CrossRef Google Scholar

    [28] Trudgill S T, Pickles A M, Smettem K R J, et al. Soil-water residence time and solute uptake: 1. Dye tracing and rainfall events. Journal of Hydrology, 1983, 60(1-4): 257-279. doi: 10.1016/0022-1694(83)90026-4

    CrossRef Google Scholar

    [29] 王新中, 班凤梅, 潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例[J].第四纪研究, 2005, 25(2):258-264. doi: 10.3321/j.issn:1001-7410.2005.02.018

    CrossRef Google Scholar

    WANG XinZhong, BAN Fengmei, Pan Genxing. Temporal and spatial variation of cave dripwater geochemistry in Shihua Cave, Beijing, China[J]. Quaternary Sciences, 2005, 25(2):258-264. doi: 10.3321/j.issn:1001-7410.2005.02.018

    CrossRef Google Scholar

    [30] 班凤梅, 潘根兴, 蔡炳贵, 等.北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义[J].中国岩溶, 2009, 28(3):243-248. doi: 10.3969/j.issn.1001-4810.2009.03.003

    CrossRef Google Scholar

    BAN Fengmei, PAN Genxing, CAI Binggui, et al. Temporal-spatial variation of concentration of the dripwater and its significance in the Shihua Cave, Beijing[J]. Carsologica Sinica, 2009, 28(3):243-248. doi: 10.3969/j.issn.1001-4810.2009.03.003

    CrossRef Google Scholar

    [31] 周福莉, 李廷勇, 陈虹利, 等.重庆芙蓉洞洞穴水水文地球化学指标的时空变化[J].水土保持学报, 2012, 26(3):253-259.

    Google Scholar

    ZHOU Fuli, LI Tingyong, CHEN Hongli, et al. Spatial and temporal variation of hydrogeochemical indices of the cave water in Furong Cave, Chongqing[J]. 2012, 26(3):253-259.

    Google Scholar

    [32] Tatár E, Mihucz V G, Zámbó L, et al. Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Béke Cave of the Aggtelek karst system (Hungary)[J]. Applied Geochemistry, 2004, 19:1727-1733. doi: 10.1016/j.apgeochem.2004.03.011

    CrossRef Google Scholar

    [33] 郭正堂, 刘东生, 吴乃琴, 等.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究, 1996, 16(1):21-30. doi: 10.3321/j.issn:1001-7410.1996.01.003

    CrossRef Google Scholar

    GUO Zhengtang, LIU Dongsheng, WU Naiqin, et al. Heinrich-Rhythm pulses of climates recorded in loess of the last two glaciations[J]. Quaternary Sciences, 1996, 16(1):21-30. doi: 10.3321/j.issn:1001-7410.1996.01.003

    CrossRef Google Scholar

    [34] Broecker W S, Olson E A. Radiocarbon Measurements and Annual Rings in Cave Formations[J]. Nature, 1960, 185:93-94. doi: 10.1038/185093a0

    CrossRef Google Scholar

    [35] Karmann I, Jr F W C, Jr O V, et al. Climate influence on geochemistry parameters of waters from Santana-Pérolas cave system, Brazil[J]. Chemical Geology, 2007, 244:232-247. doi: 10.1016/j.chemgeo.2007.06.029

    CrossRef Google Scholar

    [36] McBride M B. Environmental Chemistry of Soils [M]. Oxford: Oxford University Press, 1994:406.

    Google Scholar

    [37] 陈雪彬, 杨平恒, 蓝家程, 等.降雨条件下岩溶地下水微量元素变化特征及其环境意义[J].环境科学, 2014, 35(1):123-130. doi: 10.3969/j.issn.1007-0370.2014.01.040

    CrossRef Google Scholar

    CHEN Xuebin, YANG Pingheng, LAN Jiacheng, et al. Variation characteristics and environmental significant of trace elements under rainfall condition in karst groundwater[J]. Environmental Science, 2014, 35(1):123-130. doi: 10.3969/j.issn.1007-0370.2014.01.040

    CrossRef Google Scholar

    [38] Morse J W, Bender M L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems [J]. Chemical Geology, 1990, 82:265-277. doi: 10.1016/0009-2541(90)90085-L

    CrossRef Google Scholar

    [39] Gascoyne M. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies[J]. Journal of Hydrology, 1983, 61(1-3):213-222. doi: 10.1016/0022-1694(83)90249-4

    CrossRef Google Scholar

    [40] Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records[J]. Chemical Geology, 2000, 166:255-269. doi: 10.1016/S0009-2541(99)00216-8

    CrossRef Google Scholar

    [41] Atkinson T C. Growth Mechanisms of Speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada[J]. Arctic and Alpine Research, 1983, 15(4):523-536. doi: 10.2307/1551238

    CrossRef Google Scholar

    [42] Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem[J]. Earth and Planetary Science Letters, 1998, 154:237-246. doi: 10.1016/S0012-821X(97)00116-7

    CrossRef Google Scholar

    [43] 黄嘉仪, 陈琳, 陈琼, 等.广东英德宝晶宫洞穴滴水元素季节变化与影响因素[J].环境科学, 2016, 37(5):1798-1804.

    Google Scholar

    HUANG Jiayi, CHEN Lin, CHEN Qiong, et al. Seasonal variations and controlling factors of the element contents in drip waters collected from the Baojinggong Cave in Guangdong Province[J]. Environmental Science, 2016, 37(5):1798-1804.

    Google Scholar

    [44] Zhou H Y, Wang Y, Huang L Y, et al. Speleothem Mg, Sr and Ba records during the MIS 5c-d, and implications for paleoclimate change in NE Sichuan, Central China[J]. Chinese Science Bulletin, 2011, 56: 3445-3450. doi: 10.1007/s11434-011-4681-y

    CrossRef Google Scholar

    [45] 张伟宏, 汪永进, 吴江滢, 等.南京葫芦洞石笋微量元素记录的末次冰消期气候变化[J].第四纪研究, 2014, 34(6):1227-1237.

    Google Scholar

    ZHANG Weihong, WANG Yongjin, WU Jiangying, et al. Last deglacial climate variations inferred from trace elements in a stalagmite from Hulu Cave, Nanjing[J]. Quaternary Sciences, 2014, 34(6):1227-1237.

    Google Scholar

    [46] Ku T L, Li H C. Speleothems as high-resolution paleoenvironment archives: Records from northeastern China[J]. Journal of Earth System Science, 1998, 107(4):321-330.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(1366) PDF downloads(119) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint