2020 Vol. 47, No. 5
Article Contents

2020. Geological characteristics of 111 typical gold deposits in the world[J]. Geology in China, 47(5): 1602-1621.
Citation: 2020. Geological characteristics of 111 typical gold deposits in the world[J]. Geology in China, 47(5): 1602-1621.

Geological characteristics of 111 typical gold deposits in the world

  • 加载中
  • Abzalov M. 2007. Zarmitan granitoid-hosted gold deposit, Tian Shan belt, Uzbekistan[J]. Economic Geology, 102(3):519-532. doi: 10.2113/gsecongeo.102.3.519

    CrossRef Google Scholar

    ALEKSANDROV A L, OLOVYASHNIKOV V M, POTORCHENKO A N. 1975. Florencite from Bodaybo gold-ore field as an indicator of hydrothermal processes:Transactions (Doklady), Academy of Sciences of the USSR[J]. Earth Science Sections, 224:110-112.

    Google Scholar

    Ansdell K M, Abeleira A, Ivanov S. 1999. Structural evolution and vein paragenesis at the Kumtor gold deposit, Kyrgyzstan[J]. Mineral deposits:Processes to processing:Rotterdam, Balkema, 2:1375-1378.

    Google Scholar

    Arehart G B, Donelick R A. 2006. Thermal and isotopic profiling of the Pipeline hydrothermal system:Application to exploration for Carlin-type gold deposits[J]. Journal of Geochemical Exploration, 91(1):27-40.

    Google Scholar

    Arehart G B. 1996. Characteristics and origin of sediment-hosted disseminated gold deposits:a review[J]. Ore Geology Reviews, 11(6):383-403. doi: 10.1016/S0169-1368(96)00010-8

    CrossRef Google Scholar

    Arenson L U, Jakob M, Wainstein P. Effects of Dust Deposition on Glacier Ablation and Runoff at the Pascua-Lama Mining Project, Chile and Argentina[C]//Engineering Geology for Society and Territory. 2014: 27-32.

    Google Scholar

    Arif J, Baker T. 2004. Gold paragenesis and chemistry at Batu Hijau, Indoneisa:implications for gold-rich porphyry copper deposits[J]. Mineralium Deposita, 39(5-6):523-535. doi: 10.1007/s00126-004-0433-0

    CrossRef Google Scholar

    Baldwin J T, Swain H D, Clark G H, et al. 1978. Geology and grade distribution of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J]. Economic Geology, 73 (5).690-702.

    Google Scholar

    Barrell J. 1907. Geology of the Marysville Mining District, Montana:a study of igneous intrusion and contact metamorphism[M]. US Government Printing Office, .

    Google Scholar

    Berger B R, Henley R W, Lowers H A, et al. 2014. The Lepanto Cu-Au deposit, Philippines:A fossil hyperacidic volcanic lake complex[J]. Journal of Volcanology & Geothermal Research, 271(2):70-82.

    Google Scholar

    Bissig T, Clark A H, Rainbow A, et al. 2015. Physiographic and tectonic settings of high-sulfidation epithermal gold-silver deposits of the Andes and their controls on mineralizing processes[J]. Ore Geology Reviews, 65(65):327-364.

    Google Scholar

    Blissett J, Bennett C, Donohoe J, et al. 2014. Mantle Contribution for the Formation of Giant Ore Deposits:Case Study from the Kalmakyr and Muruntau Ore Districts, Tienshan, Uzbekistan[J]. Acta Geologica Sinica, 88(s2):887-888. doi: 10.1111/1755-6724.12376_12

    CrossRef Google Scholar

    BONHAM H F Jr. Models for volcanic-hosted epithermal precious metal deposits: Areview[A]. International Volcanological Congress, Symposium 5[C]. Hamilton, NewZealand, February 1986. 13-17.

    Google Scholar

    Bortnikov N S, Gamyanin G N, Vikent'Eva O V, et al. 2007. Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia[J]. Geology of Ore Deposits, 49(2):87-128. doi: 10.1134/S1075701507020018

    CrossRef Google Scholar

    Boulter C A, Fotios M G, Phillips G N. 1987. The Golden Mile, Kalgoorlie; a giant gold deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid[J]. Economic Geology, 82(7):1661-1678. doi: 10.2113/gsecongeo.82.7.1661

    CrossRef Google Scholar

    Boyle R W. 1959. The geochemistry, origin, and role of carbon dioxide, water, sulfur, and boron in the Yellowknife gold deposits, Northwest Territories, Canada[J]. Economic Geology, 54(8):1506-1524. doi: 10.2113/gsecongeo.54.8.1506

    CrossRef Google Scholar

    Boyle R W. 1960. The Geology, Geochemistry, and Origin of the Gold, Deposits of the Yellowknife District[M]. Department of mines and technical surveys, .

    Google Scholar

    Bozkaya G, Banks D A. 2014. Epithermal Base-metal-Au Deposits, NW Turkey:PT-Composition of the Ore Fluids[J]. Acta Geologica Sinica, 88(2):1064-1065.

    Google Scholar

    C.A.Boulter, M.G.Fotios, G.N.Phillips, 等. 1991.卡尔古利区戈尔登迈尔:构造引起的含金变质流体的渗入:位于韧性剪切带的大型金矿床[J].世界地质, (2):124-137.

    Google Scholar

    Cabral A R, Lehmann B, Kwitko R, et al. 2002. The Serra Pelada Au-Pd-Pt deposit, Carajás mineral province, northern Brazil:reconnaissance mineralogy and chemistry of very high grade palladian gold mineralization[J]. Economic geology, 97(5):1127-1138.

    Google Scholar

    Caddey S W. 1992. The Homestake Gold Mine:an early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota[M]. US Department of the Interior, US Geological Survey, .

    Google Scholar

    Cameron E M, Hattori K. 1985. The Hemlo gold deposit, Ontario:A geochemical and isotopic study[J]. Geochimica et Cosmochimica Acta, 49(10):2041-2050. doi: 10.1016/0016-7037(85)90062-6

    CrossRef Google Scholar

    Camprubí A, Albinson T. 2007. Epithermal deposits in México-Update of current knowledge, and an empirical reclassification[J]. Special Paper of the Geological Society of America, 422(4):377-415. doi: 10.1130/2007.2422(14)

    CrossRef Google Scholar

    Cannell J, Cooke D, Walshe J, et al.2005., Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100:979-1003. doi: 10.2113/gsecongeo.100.5.979

    CrossRef Google Scholar

    Carman G D. 2003. Geology, mineralization, and hydrothermal evolution of the Ladolam gold deposit, Lihir Island, Papua New Guinea[J]. Special Publication-Society of Economic Geologists, 10:247-284.

    Google Scholar

    Carpenter R L, Duke N A. 2004. Geological Setting of the West Meliadine Gold Deposits, Western Churchill Province, Nunavut, Canada[J]. Exploration and Mining Geology, 13(1-4):49-65. doi: 10.2113/gsemg.13.1-4.49

    CrossRef Google Scholar

    Cerpa L M, Bissig T, Kyser K, et al. 2013. Lithologic controls on mineralization at the Lagunas Norte high-sulfidation epithermal gold deposit, northern Peru[J]. Mineralium Deposita, 48(5):653-673. doi: 10.1007/s00126-013-0455-6

    CrossRef Google Scholar

    Charchaflie D, Tosdal R M, Mortensen J K. 2007. Geologic Framework of the Veladero High-Sulfidation Epithermal Deposit Area, Cordillera Frontal, Argentina[J]. Economic Geology, 102(2):171-192. doi: 10.2113/gsecongeo.102.2.171

    CrossRef Google Scholar

    Chernyshev I V, Bortnikov N S, Chugaev A V, et al. 2011. Metal sources of the large Nezhdaninsky orogenic gold deposit, Yakutia, Russia:Results of high-precision MC-ICP-MS analysis of lead isotopic composition supplemented by data on strontium isotopes[J]. Geology of Ore Deposits, 53(5):353-373. doi: 10.1134/S1075701511050035

    CrossRef Google Scholar

    Christie A B, Simpson M P, Brathwaite R L, et al. 2007. Epithermal Au-Ag and Related Deposits of the Hauraki Goldfield, Coromandel Volcanic Zone, New Zealand[J]. Economic Geology, 102(5):785-816. doi: 10.2113/gsecongeo.102.5.785

    CrossRef Google Scholar

    Claveria R J R. 2001. Mineral Paragenesis of the Lepanto Copper and Gold and the Victoria Gold Deposits, Mankayan Mineral District, Philippines[J]. Resource Geology, 51(2):97-106. doi: 10.1111/j.1751-3928.2001.tb00084.x

    CrossRef Google Scholar

    Cline J S, Hofstra A A. 2000. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA[J]. European Journal of Mineralogy, 12(1):195-212. doi: 10.1127/ejm/12/1/0195

    CrossRef Google Scholar

    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801

    CrossRef Google Scholar

    Cooke, D.1996. R., Mcphail, D.C., Bloom, M.S., . Epithermal gold mineralization, Acupan, Baguio District, Philippines; geology, mineralization, alteration, and the thermochemical environment of ore deposition. Economic Geology.

    Google Scholar

    Corbett G. 2002. Epithermal gold for explorationists[J]. AIG Journal-Applied Geoscientific Practice and Research in Australia, April:1-26.

    Google Scholar

    Cox S F, Ruming K. 2004. The St Ives mesothermal gold system, Western Australia-a case of golden aftershocks?[J]. Journal of Structural Geology, 26(6):1109-1125.

    Google Scholar

    Cunningham C G, Zartman R E, Mckee E H, et al. 1996. The age and thermal history of Cerro Rico de Potosi, Bolivia[J]. Mineralium Deposita, 31(5):374-385. doi: 10.1007/BF00189185

    CrossRef Google Scholar

    D.C.Harris, 王魁元. 1988.加拿大安大略赫姆洛的赫姆洛金矿床主矿的矿物学和地球化学[J].地质调查与研究, (4):50-61.

    Google Scholar

    Davidson J, Mpodozis C. 1991. Regional geologic setting of epithermal gold deposits, Chile[J]. Economic Geology, 86(6):1174-1186. doi: 10.2113/gsecongeo.86.6.1174

    CrossRef Google Scholar

    Davies R C, Williams P J. 2005. The El Galeno and Michiquillay porphyry Cu-Au-Mo deposits:geological descriptions and comparison of Miocene porphyry systems in the Cajamarca district, northern Peru[J]. Mineralium Deposita, 40(5):598-616. doi: 10.1007/s00126-005-0026-6

    CrossRef Google Scholar

    de Ronde C E J, Faure K, Bray C J, et al. 2000. Round Hill shear zone-hosted gold deposit, Macraes Flat, Otago, New Zealand:evidence of a magmatic ore fluid[J]. Economic Geology, 95(5):1025-1048.

    Google Scholar

    Demange M, Pascal M L, Raimbault L, et al. 2006. The Salsigne Au-As-Bi-Ag-Cu Deposit, France[J]. Economic Geology, 101(1):199-234. doi: 10.2113/gsecongeo.101.1.199

    CrossRef Google Scholar

    Departamento Nacional de Produção Mineral, 2007a, p. 10; Ferraz, 2007, p. 4; Yamana Gold Inc., 2007

    Google Scholar

    Deptuck R, Squair H, Wierzbicki V. 1982. Geology of the Detour zinc-copper deposits, Brouillan Township, Quebec[J]. Precambrian sulfide deposits. Geological Association of Canada, Special Paper, 25:319-342.

    Google Scholar

    Deyell C L, Leonardson R, Rye R O, et al. 2005. Alunite in the Pascua-Lama High-Sulfidation Deposit:Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry[J]. Economic Geology, 100(1):131-148. doi: 10.2113/100.1.0131

    CrossRef Google Scholar

    Distler VV, Yudovskaya MA, Mitrofanov GL, Prokof'Ev VY, Lishnevskii EN. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia. Ore Geology Reviews 2004, 24: 7-44.

    Google Scholar

    Drew L J, Berger B R, Kurbanov N K. 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan[J]. Ore Geology Reviews, 11(4):175-196. doi: 10.1016/0169-1368(95)00033-X

    CrossRef Google Scholar

    E.A.Elevatorski, 周维康. 1986.火山成因金矿床[J].国外火山地质, (1):31-37.

    Google Scholar

    Eastoe C J. 1983. Sulfur isotope data and the nature of the hydrothermal systems at the Panguna and Frieda porphyry copper deposits, Papua New Guinea[J]. Economic Geology, 78(2):201-213. doi: 10.2113/gsecongeo.78.2.201

    CrossRef Google Scholar

    Eliopoulos D G, Economou-Eliopoulos M. 1991. Platinum-group element and gold contents in the Skouries porphyry copper deposit, Chalkidiki Peninsula, northern Greece[J]. Economic Geology, 86(4):740-749. doi: 10.2113/gsecongeo.86.4.740

    CrossRef Google Scholar

    Etoh J, Izawa E, Taguchi S. 2002. A Fluid Inclusion Study on Columnar Adularia from the Hishikari Low-sulfidation Epithermal Gold Deposit, Japan[J]. Resource Geology, 52(1):73-78. doi: 10.1111/j.1751-3928.2002.tb00119.x

    CrossRef Google Scholar

    Etoh J, Izawa E, Watanabe K, et al. 2002. Bladed quartz and its relationship to gold mineralization in the Hishikari low-sulfidation epithermal gold deposit, Japan[J]. Economic Geology, 97(8):1841-1851. doi: 10.2113/gsecongeo.97.8.1841

    CrossRef Google Scholar

    Fifarek R H, Rye R O. 2005. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru:influence of hydrodynamics on SO 4 2--H 2 S sulfur isotopic exchange in magmatic-steam and steam-heated environments[J]. Chemical Geology, 215(1):253-279.

    Google Scholar

    Fleming A W, Handley G A, Williams K L, et al. 1986. The Porgera gold deposit, Papua New Guinea[J]. Economic Geology, 81(3):660-680. doi: 10.2113/gsecongeo.81.3.660

    CrossRef Google Scholar

    FooST, Hays Jr R C, McCormack J K. Geology and mineralization of the Pipeline gold deposit, Lander County, Nevada[C]//Geology and Ore Deposits of the American Cordillera: Geological Society of Nevada Symposium Proceedings. 1996, 1: 95-109.

    Google Scholar

    Fredericksen R S. Geology of Kuranakh deposit ore field[C]//Russia: Alaska Miners Association 1998 Annual Convention Abstracts, Anchorage. 1998: 60-62.

    Google Scholar

    Frei R. 1995. Evolution of mineralizing fluid in the porphyry copper system of the Skouries Deposit, Northeast Chalkidiki (Greece); evidence from combined Pb-Sr and stable isotope data[J]. Economic Geology, 90(4):746-762. doi: 10.2113/gsecongeo.90.4.746

    CrossRef Google Scholar

    G.Siddeley, R.Araneda, 田书文. 1989.智利的埃尔印第奥-坦博金矿床[J].地质调查与研究, (1):61-74.

    Google Scholar

    Gair J E. Geology and ore deposits of the Nova Lima and Rio Acima quadrangles, Minas Gerais, Brazil[R]. 1962.

    Google Scholar

    Gao Z L, Kwak T A P. 1995. Turbidite-hosted gold deposits in the Bendigo-Ballarat and Melbourne Zones, Australia. I. Geology, Mineralization, stable isotopes, and implications for exploration[J]. International Geology Review, 37(10):910-944. doi: 10.1080/00206819509465433

    CrossRef Google Scholar

    Goellnicht N M, Groves D I, McNaughton N J, et al. 1989. An epigenetic origin for the Telfer gold deposit[J]. Econ. Geol. Monogr, 6:151-167.

    Google Scholar

    Goldfarb R J, Ayuso R, Miller M L, et al. 2004. The late Cretaceous Donlin Creek gold deposit, Southwestern Alaska:Controls on epizonal ore formation[J]. Economic Geology, 99(4):643-671 doi: 10.2113/gsecongeo.99.4.643

    CrossRef Google Scholar

    Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time:a global synthesis[J]. Ore Geology Reviews, 18(1-2):1-75. doi: 10.1016/S0169-1368(01)00016-6

    CrossRef Google Scholar

    Goldfarb R, Baker T, Dube B, et al. 2005. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes[J]. Economic Geology 100th Anniversary Volum, . 407-450

    Google Scholar

    Goldie M. 2002. Self-potentials associated with the Yanacocha high-sulfidation gold deposit in Peru[J]. Geophysics, 67(3):684-689. doi: 10.1190/1.1484511

    CrossRef Google Scholar

    Goryachev N A, Vikent'Eva O V, Bortnikov N S, et al. 2008. The world-class Natalka gold deposit, northeast Russia:REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore[J]. Geology of Ore Deposits, 50(5):362-390. doi: 10.1134/S1075701508050024

    CrossRef Google Scholar

    Goryachev, N. A., Pirajno, F., . Gold deposits and gold metallogeny of Far East Russia. Ore Geology Reviews, 59(0): 123-151.

    Google Scholar

    Greenhoot C A. 2000. Geology of the metates gold-silver deposit, Durango, Mexico[J].

    Google Scholar

    Groves D I, Goldfarb R J, Gebre-Mariam M, et al. 1998. Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5):7-27. doi: 10.1016/S0169-1368(97)00012-7

    CrossRef Google Scholar

    Groves D I. 2003. Gold deposits in metamorphic belts:Overview of current understanding, outstanding problems, future research, and exploration significance[J]. Economic Geology, 98(98):1-29.

    Google Scholar

    Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia[J]. Mineralium Deposita, 28(6):366-374. doi: 10.1007/BF02431596

    CrossRef Google Scholar

    Gumiel P, Martín-Izard A, Arias M, et al. 2008. Geometrical analysis of the Punta del Pedrón shear zone (Asturias, Spain):Implications related to exploration of Salave Gold-type mineralization[J]. Journal of Structural Geology, 30(3):354-365. doi: 10.1016/j.jsg.2007.11.009

    CrossRef Google Scholar

    Hancock K D, Simandl G J. 1992. Geology of the Marysville Magnesite Deposit, Southeastern British Columbia[J]. British Columbia Ministry of Energy, Mines and Petroleum Resources, :71-80.

    Google Scholar

    Hancock M C, Robertson I G, Booth G W. 1990. Paddington gold deposits[J]. Geology of the Mineral Deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, :395-400.

    Google Scholar

    Harris A C, Kamenetsky V S, White N C, et al. 2004. Volatile Phase Separation in Silicic Magmas at Bajo de la Alumbrera Porphyry Cu-Au Deposit, NW Argentina[J]. Resource Geology, 54(3):341-356. doi: 10.1111/j.1751-3928.2004.tb00210.x

    CrossRef Google Scholar

    HEALDP, FOLEYNK, HAYBADO. 1987. Comparative anatomy of volcanic-hosted epithermal deposits-Acid sulphate and adularia-sericitetypes[J]. Economic Geology, 80:1-26.

    Google Scholar

    Hede, 苑丽华. 1999.以侵入岩体为中心的热液系统的演化:菲律宾Lepanto远东南的斑岩型?…[J].贵金属地质, (4):251-252.

    Google Scholar

    Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 93(4):373-404. doi: 10.2113/gsecongeo.93.4.373

    CrossRef Google Scholar

    Heinhorst J, Lehmann B, Ermolov P, et al. 2000. Paleozoic crustal growth and metallogeny of Central Asia:evidence from magmatic-hydrothermal ore systems of Central Kazakhstan[J]. Tectonophysics, 328(1):69-87.

    Google Scholar

    HEKPACOB E·M·, 张民义. 1983.大型金矿床的主要构造特征(以加拿大阿比提比带为例)[J].地质调查与研究, (4):75-85.

    Google Scholar

    Helmy, H.M., Kaindl, R., Fritz, H., Loizenbauer, J., 2004. The Sukari Gold Mine, Eastern Desert-Egypt: structural setting, mineralogy and fluid inclusion study. Mineralium Deposita, 39(4): 495-511.

    Google Scholar

    Hickey K A, Ahmed A D, Barker S L L, et al. 2014. Fault-Controlled Lateral Fluid Flow Underneath and Into a Carlin-Type Gold Deposit:Isotopic and Geochemical Footprints[J]. Economic Geology, 109(5):1431-1460. doi: 10.2113/econgeo.109.5.1431

    CrossRef Google Scholar

    Hirdes W, Nunoo B. 1994. The Proterozoic paleoplacers at Tarkwa gold mine, SW Ghana:sedimentology, mineralogy, and precise age dating of the Main Reef and West Reef, and bearing of the investigations on source area aspects[J]. Geologisches Jahrbuch D, 100:247-311.

    Google Scholar

    Hitzman M W, Oreskes N, Einaudi M T. 1992. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu、U、Au、REE) deposits[J]. Precambrian Research, 58(s 1-4):241-287.

    Google Scholar

    Holley E A. 2012. The Veladero high-sulfidation epithermal Au-Ag deposit, Argentina:Volcanic stratigraphy, alteration, mineralization, and quartz paragenesis[J]. Dissertations & Theses-Gradworks, .

    Google Scholar

    IMAI A. 2001. Generation and Evolution of Ore Fluids for Porphyry Cu-Au Mineralization of the Santo Tomas Ⅱ (Philex) Deposit, Philippines[J]. Resource Geology, 51(2):71-96. doi: 10.1111/j.1751-3928.2001.tb00083.x

    CrossRef Google Scholar

    Imai, A., Ohno, S., 2008. Primary Ore Mineral Assemblage and Fluid Inclusion Study of the Batu Hijau Porphyry Cu-Au Deposit, Sumbawa, Indonesia. Resource Geology, 55(3): 239-248.

    Google Scholar

    İmer A, Richards J P, Creaser R A. 2013. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey[J]. Mineralium Deposita, 48(5):557-583. doi: 10.1007/s00126-012-0444-1

    CrossRef Google Scholar

    J.B.Whalen, R.M.Britten, I.McDougall, 等. 1985.巴布亚-新几内亚Frieda河远景区地质简介[J].地质通报, (2):125-132.

    Google Scholar

    J.V.Hamilton, Hodgson, C.J., 李上森, 1988.印度科拉尔金矿田的矿化和构造.国外前寒武纪地质.

    Google Scholar

    Jan Pasava, 李新宇. 1989.黑色页岩中的金矿床成因——IGCP254研究新成果之一[J].黄金科学技术, (08).

    Google Scholar

    Jannas R R, Beane R E, Ahler B A, et al. 1990. Gold and copper mineralization at the El Indio deposit, Chile[J]. Journal of Geochemical Exploration, 36(1-3):233-266. doi: 10.1016/0375-6742(90)90057-H

    CrossRef Google Scholar

    Jannas R R, Bowers T S, Petersen U, et al. 1999. High-sulfidation deposit types in the El Indio district, Chile[J]. Soc. Econ. Geol. Spec. Publ, 7:219-266.

    Google Scholar

    Jannas R R. 1990b. Gold and copper mineralization in the El Indio deposit, Chile, Epithermal Gold Mineralization of the Circum-Pacific:Geology, Geochemistry, Origin and Exploration Ⅱ[J]. Jour.geochem.explor, 36:233-266. doi: 10.1016/0375-6742(90)90057-H

    CrossRef Google Scholar

    John M. Guibert, Charles F.Park Jr, 天华. 1988.加拿大西北部耶洛奈夫地区金矿床[J].世界核地质科学, (4):28-33.

    Google Scholar

    Johnson J P, McCulloch M T. 1995. Sources of mineralising fluids for the Olympic Dam deposit (South Australia):Sm-Nd isotopic constraints[J]. Chemical Geology, 121(1):177-199.

    Google Scholar

    Kelley K D, Romberger S B, Beaty D W, et al. 1998. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado[J]. Economic Geology, 93(7):981-1012. doi: 10.2113/gsecongeo.93.7.981

    CrossRef Google Scholar

    Kempe, U. et al., 2015. Concordant U-Pb SHRIMP ages of U-rich zircon in granitoids from the Muruntau gold district (Uzbekistan): Timing of intrusion, alteration ages, or meaningless numbers. Ore Geology Reviews, 65: 308-326.

    Google Scholar

    Kerr D J, Gibson H L. 1993. A comparison of the Horne volcanogenic massive sulfide deposit and intracauldron deposits of the Mine Sequence, Noranda, Quebec[J]. Economic Geology, 88(6):1419-1442. doi: 10.2113/gsecongeo.88.6.1419

    CrossRef Google Scholar

    Kerrich R, Goldfarb R, Groves D, et al. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science China Earth Sciences, 43(1):1-68.

    Google Scholar

    Kerrich R, Wyman D. 1990. Geodynamic setting of mesothermal gold deposits:An association with accretionary tectonic regimes[J]. Geology, 18(9):882-885. doi: 10.1130/0091-7613(1990)018<0882:GSOMGD>2.3.CO;2

    CrossRef Google Scholar

    Kesler S E, Russell N, Seaward M, et al. 1981. Geology and geochemistry of sulfide mineralization underlying the Pueblo Viejo gold-silver oxide deposit, Dominican Republic[J]. Economic Geology, 76(5):1096-1117. doi: 10.2113/gsecongeo.76.5.1096

    CrossRef Google Scholar

    Khashgerel B E, Rye R O, Hedenquist J W, et al. 2006. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia[J]. Economic Geology, 101(3):503-522. doi: 10.2113/gsecongeo.101.3.503

    CrossRef Google Scholar

    Kishida A, Kerrich R. 1987. Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit, Kirkland Lake, Ontario[J]. Economic Geology, 82(3):649-690. doi: 10.2113/gsecongeo.82.3.649

    CrossRef Google Scholar

    Klein E L, Harris C, Giret A, et al. 2005. Geology and stable isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi Belt, northern Brazil[J]. Chemical geology, 221(3):188-206.

    Google Scholar

    Kouzmanov K, von Quadt A, Peytcheva I, et al. 2005. Rosia Poieni porphyry Cu-Au and Rosia Montana epithermal Au-Ag deposits, Apuseni Mts., Romania:Timing of magmatism and related mineralisation[J]. Bulgarian Academy of Sciences, Geochemistry, Mineralogy and Petrology, 43:113-117.

    Google Scholar

    Kouzmanov, K. et al., 2006. Magmatic Fluids in the Breccia-Hosted Epithermal Au-Ag Deposit of Rosia Montana, Romania. Economic Geology, 101(5): 923-954.

    Google Scholar

    Kuehn C A, Rose A W. 1995. Carlin gold deposits, Nevada:Origin in a deep zone of mixing between normally pressured and over-pressured fluids[J]. Economic Geology, 90(1):17-36. doi: 10.2113/gsecongeo.90.1.17

    CrossRef Google Scholar

    Kuyumjian R M. 1995. Diversity of fluids in the origin of the Chapada Cu-Au deposit, Goiás[J]. Rev. Bras. Geociências, 25(3):203-205. doi: 10.25249/0375-7536.1995203205

    CrossRef Google Scholar

    Large R R, Maslennikov V V, Robert F, et al. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia[J]. Economic Geology, 102(7):1233-1267. doi: 10.2113/gsecongeo.102.7.1233

    CrossRef Google Scholar

    Lawley C J M, Creaser R A, Jackson S E, et al. 2015. Unraveling the western Churchill province Paleoproterozoic gold metallotect:Constraints from Re-Os Arsenopyrite and U-Pb Xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted Meliadine gold district, Nunavut, Canada[J]. Economic Geology, 110(6):1425-1454. doi: 10.2113/econgeo.110.6.1425

    CrossRef Google Scholar

    Le Guen M, Lescuyer J L, Marcoux E. 1992. Lead-isotope evidence for a Hercynian origin of the Salsigne gold deposit (Southern Massif Central, France)[J]. Mineralium Deposita, 27(2):129-136. doi: 10.1007/BF00197097

    CrossRef Google Scholar

    Lesage G, Richards J P, Muehlenbachs K, et al. 2013. Geochronology, geochemistry, and fluid characterization of the late Miocene Buriticá gold deposit, Antioquia Department, Colombia[J]. Economic Geology, 108(5):1067-1097. doi: 10.2113/econgeo.108.5.1067

    CrossRef Google Scholar

    Lesage G. 2011. Geochronology, Petrography, Geochemical Constraints, and Fluid Characterization of the Buriticá Gold Deposit, Antioquia Department, Colombia[D]. University of Alberta, .

    Google Scholar

    Levitan G. 2008. Gold deposits of the CIS[M]. Xlibris Corporation, .

    Google Scholar

    Lin S, Corfu F. 2002. Structural setting and geochronology of auriferous quartz veins at the High Rock Island gold deposit, northwestern Superior Province, Manitoba, Canada[J]. Economic Geology, 97(1):43-57. doi: 10.2113/gsecongeo.97.1.43

    CrossRef Google Scholar

    Lobato L M, Santos J O S, Mcnaughton N J, et al. 2007. U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil[J]. Ore Geology Reviews, 32(3):674-680.

    Google Scholar

    Lobato L M, Vieira F W R, Ribeiro-Rodrigues L C, et al. 1998. Styles of hydrothermal alteration and gold mineralizations associated with the Nova Lima Group of the Quadrilátero Ferrífero:Part I, description of selected gold deposits[J]. Revista Brasileira de Geociências, 28(3):339-354. doi: 10.25249/0375-7536.1998339354

    CrossRef Google Scholar

    Longo A A, Dilles J H, Grunder A L, et al. 2010. Evolution of calc-alkaline volcanism and associated hydrothermal gold deposits at Yanacocha, Peru[J]. Economic Geology, 105(7):1191-1241. doi: 10.2113/econgeo.105.7.1191

    CrossRef Google Scholar

    Lubben J D, Cline J S, Barker S. 2012. Ore Fluid Properties and Sources from Quartz-Associated Gold at the Betze-Post Carlin-Type Gold Deposit, Nevada, United States[J]. Economic Geology, 107(7):1351-1385. doi: 10.2113/econgeo.107.7.1351

    CrossRef Google Scholar

    Luis Oviedo, 黄俊杰. 1993.智利亚特卡玛拉库页巴贵金属矿床的地质特征[J].国外火山地质, (2).

    Google Scholar

    MacLean W H, Hoy L D. 1991. Geochemistry of hydrothermally altered rocks at the Horne mine, Noranda, Quebec[J]. Economic Geology, 86(3):506-528. doi: 10.2113/gsecongeo.86.3.506

    CrossRef Google Scholar

    Mair J L, Farmer G L, Groves D I, et al. 2011. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada:Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems[J]. Economic Geology, 106(3):451-480. doi: 10.2113/econgeo.106.3.451

    CrossRef Google Scholar

    Mair J L, Goldfarb R J, Johnson C A, et al. 2006. Geochemical constraints on the genesis of the Scheelite Dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada[J]. Economic Geology, 101(3):523-553. doi: 10.2113/gsecongeo.101.3.523

    CrossRef Google Scholar

    Mancano D P, Campbell A R. 1995. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu Au deposit[J]. Geochimica et Cosmochimica Acta, 59(19):3909-3916. doi: 10.1016/0016-7037(95)00282-5

    CrossRef Google Scholar

    Manske S L, Hedenquist J W, O'Connor G, et al. 2006. Rosia Montana, Romania:Europe's largest gold deposit[J]. Soc Eco Geo Newsletter, 64(1):9-15.

    Google Scholar

    Mao J, Konopelko D, Seltmann R, et al. 2004. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan[J]. Economic Geology, 99(8):1771-1780. doi: 10.2113/gsecongeo.99.8.1771

    CrossRef Google Scholar

    Marinov D. Re-Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú[C]//Biennial Meeting, Sga 2011 Antofagasta, Chile. 2011.

    Google Scholar

    Martín-Izard A, Rodríguez-Terente L. 2009. Invisible gold at the Salave Deposit, NW Spain[C]//Tenth Biennial Sga Meeting, Townsville, . "smart Science for Exploration and Mining" P. J. Williams Et Al. 2009.

    Google Scholar

    Masurel Q, Thébaud N, Miller J, et al. 2017. Sadiola Hill:A world-class carbonate-hosted gold deposit in Mali, West Africa[J]. Economic Geology, 112(1):23-47. doi: 10.2113/econgeo.112.1.23

    CrossRef Google Scholar

    Mathur R, Ruiz J, Titley S, et al. 2000. Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu-Au porphyry deposit[J]. Earth and Planetary Science Letters, 183(1):7-14.

    Google Scholar

    Maughan D T, Keith J D, Christiansen E H, et al. 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA[J]. Mineralium Deposita, 37(1):14-37. doi: 10.1007/s00126-001-0228-5

    CrossRef Google Scholar

    Meffre S, Large R R, Scott R, et al. 2008. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia[J]. Geochimica et Cosmochimica Acta, 72(9):2377-2391. doi: 10.1016/j.gca.2008.03.005

    CrossRef Google Scholar

    Meldrum S J, Aquino R S, Gonzales R I, et al. 1994. The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia[J]. Journal of Geochemical Exploration, 50(1-3):203-220. doi: 10.1016/0375-6742(94)90025-6

    CrossRef Google Scholar

    Middleton C, Buenavista A, Rohrlach B, 2004. A geological review of the Tampakancopper-gold deposit, southern Mindanao, Philippines, in PACRIM 2004, AusIMM, Adelaide, Australia, September.173-187

    Google Scholar

    Minter W E L, Feather C E, Glatthaar C W. 1988. Sedimentological and mineralogical aspects of the newly discovered Witwatersrand placer deposit that reflect Proterozoic weathering, Welkom gold field, South Africa[J]. Economic Geology, 83(3):481-491. doi: 10.2113/gsecongeo.83.3.481

    CrossRef Google Scholar

    Mishra B, Panigrahi M K. 1999. Fluid evolution in the Kolar Gold Field:evidence from fluid inclusion studies[J]. Mineralium Deposita, 34(2):173-181. doi: 10.1007/s001260050194

    CrossRef Google Scholar

    Moiseenko V G, Stepanov V A, Shergina Y P. 1999. Age of the Kirov gold deposit, Amur Region[C]//DOKLADY EARTH SCIENCES C/C OF DOKLADY-AKADEMⅡA NAUK. INTERPERIODICA PUBLISHING, 369: 1217-1219.

    Google Scholar

    Monteiro L V S, Xavier R P, de Carvalho E R, et al. 2008. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil:paragenesis and stable isotope constraints[J]. Mineralium Deposita, 43(2):129-159. doi: 10.1007/s00126-006-0121-3

    CrossRef Google Scholar

    Monteiro L V S, Xavier R P, Hitzman M W, et al. 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil[J]. Ore Geology Reviews, 34(3):317-336. doi: 10.1016/j.oregeorev.2008.01.003

    CrossRef Google Scholar

    Montgomery, A. 2012. T.. Metallogenetic controls on miocene high-sulphidation epithermal gold mineralization, alto chicama district, la libertad, northern perú, .

    Google Scholar

    Moroni M, Girardi V A, Ferrario A. 2001. The Serra Pelada Au-PGE deposit, Serra dos Carajás (Pará State, Brazil):geological and geochemical indications for a composite mineralising process[J]. Mineralium Deposita, 36(8):768-785. doi: 10.1007/s001260100201

    CrossRef Google Scholar

    Moyle A J, Doyle B J, Hoogvliet H, et al. 1990. Ladolam gold deposit, Lihir island[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 2:1793-1805.

    Google Scholar

    Muntean J L. 2000. Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile[J]. Economic Geology, 95(7):1445-1472. doi: 10.2113/gsecongeo.95.7.1445

    CrossRef Google Scholar

    Nesbitt B E, Murowchick J B, Muehlenbachs K. 1986. Dual origins of lode gold deposits in the Canadian Cordillera[J]. Geology, 14(6):506-509. doi: 10.1130/0091-7613(1986)14<506:DOOLGD>2.0.CO;2

    CrossRef Google Scholar

    Neumayr P, Walshe J, Hagemann S, et al. 2008. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia:vectors to high-grade ore bodies in Archaean gold deposits?[J]. Mineralium Deposita, 43(3):363-371.

    Google Scholar

    Osae S, Kase K, Yamamoto M. 1995. A geochemical study of the Ashanti gold deposit at Obuasi, Ghana[J]. Okayama University Earth Science Report, 2(1):81-90.

    Google Scholar

    Oviedo L, Fuster N, Tschischow N, et al. 1991. General geology of La Coipa precious metal deposit, Atacama, Chile[J]. Economic Geology & the Bulletin of the Society of Economic Geologists, (6):1287-1300.

    Google Scholar

    Oviedo L, Fuster N, Tschischow N, et al. 1991. General geology of La Coipa precious metal deposit, Atacama, Chile[J]. Economic Geology, 86(6):1287-1300. doi: 10.2113/gsecongeo.86.6.1287

    CrossRef Google Scholar

    Palacios C, Herail G, Townley B, et al. 2001. The composition of gold in the cerro casale gold-rich porphyry deposit, maricunga belt, Northern Chile[J]. Canadian Mineralogist, 39(3):907-915. doi: 10.2113/gscanmin.39.3.907

    CrossRef Google Scholar

    Palenova E E, Belogub E V, Plotinskaya O Y, et al. 2015. Chemical evolution of pyrite at the Kopylovsky and Kavkaz black shale-hosted gold deposits, Bodaybo district, Russia:Evidence from EPMA and LA-ICP-MS data[J]. Geology of Ore Deposits, 57(1):64-84. doi: 10.1134/S107570151501002X

    CrossRef Google Scholar

    Parks J, Lin S, Corkery M T, et al. 2001. Geology and geochronology of the Island Lake greenstone belt, northwestern Superior Province[J]. Report of Activities, :115-120.

    Google Scholar

    Pašava J, Vymazalová A, Košler J, et al. 2010. Platinum-group elements in ores from the Kalmakyr porphyry Cu-Au-Mo deposit, Uzbekistan:bulk geochemical and laser ablation ICP-MS data[J]. Mineralium Deposita, 45(5):411-418. doi: 10.1007/s00126-010-0286-7

    CrossRef Google Scholar

    Perelló J, Cox D, Garamjav D, et al. 2001. Oyu Tolgoi, Mongolia:Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a cretaceous chalcocite blanket[J]. Economic Geology, 96(6):1407-1428. doi: 10.2113/gsecongeo.96.6.1407

    CrossRef Google Scholar

    Phillips G N, Brown I J. 1987. Host rock and fluid control on carbonate assemblages in the Golden Mile Dolerite, Kalgoorlie gold deposit, Australia[J]. The Canadian Mineralogist, 25(2):265-273.

    Google Scholar

    Phillips G N, Groves D I, Kerrich R. 1996. Factors in the formation of the giant Kalgoorlie gold deposit[J]. Ore Geology Reviews, 10(3-6):295-317. doi: 10.1016/0169-1368(95)00028-3

    CrossRef Google Scholar

    Phillips G N. 1986. Geology and alteration in the Golden Mile, Kalgoorlie[J]. Economic Geology, 81(4):779-808. doi: 10.2113/gsecongeo.81.4.779

    CrossRef Google Scholar

    Pigois J P, Groves D I, Fletcher I R, et al. 2003. Age constraints on Tarkwaian palaeoplacer and lode-gold formation in the Tarkwa-Damang district, SW Ghana[J]. Mineralium Deposita, 38(6):695-714. doi: 10.1007/s00126-003-0360-5

    CrossRef Google Scholar

    Plim, 刘洪涛. 1990.巴布亚新几内亚Lihir(利海尔)岛金矿床地质和地球化学[J].国外地质:北京, (5):29-31.

    Google Scholar

    Plimer I R, Andrew A S, Jenkins R, et al. The geology and geochemistry of the Lihir deposit, Papua New Guinea[C]//Bicent. Gold'88 Conf., Geol. Soc. Aust., Abstr. 1988, 22: 139-143.

    Google Scholar

    Pollard P J, Taylor R G, Peters L. 2005. Ages of intrusion, alteration, and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia[J]. Economic Geology, 100(5):1005-1020. doi: 10.2113/gsecongeo.100.5.1005

    CrossRef Google Scholar

    Pollard P J. 2006. An intrusion-related origin for Cu-Au mineralizationin iron oxide-copper-gold (IOCG) provinces[J]. Mineralium Deposita, 41:179-187. doi: 10.1007/s00126-006-0054-x

    CrossRef Google Scholar

    Pomies C, Cocherie A, Guerrot C, et al. 1998. Assessment of the precision and accuracy of lead-isotope ratios measured by TIMS for geochemical applications:example of massive sulphide deposits (Rio Tinto, Spain)[J]. Chemical Geology, 144(1):137-149.

    Google Scholar

    Proffett J M. 2003. Geology of the Bajo de la Alumbrera Porphyry Copper-Gold Deposit, Argentina[J]. Economic Geology, 98(8):1535-1574. doi: 10.2113/gsecongeo.98.8.1535

    CrossRef Google Scholar

    R. J. McH. Clark, R. Bonnar, 毛伦锦. 1990.安大略Larder湖附近Cheminis矿床中与太古界层控硫化物有关的金矿化[J].世界核地质科学, (3):19-24.

    Google Scholar

    Radtke A S, Rye R O, Dickson F W. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada[J]. Economic Geology, 75(5):641-672. doi: 10.2113/gsecongeo.75.5.641

    CrossRef Google Scholar

    Radtke A S. 1985. Geology of the Carlin gold deposit, Nevada[R]. USGPO,, .

    Google Scholar

    Rainbow A, Clark A H, Kyser T K, et al. 2005. The Pierina epithermal Au-Ag deposit, Ancash, Peru:paragenetic relationships, alunite textures, and stable-isotope geochemistry[J]. Chemical geology, 215(1):235-252.

    Google Scholar

    Redmond P B, Einaudi M T, Inan E E, et al. 2004. Copper deposition by fluid cooling in intrusion-centered systems:New insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 32(3):217-220. doi: 10.1130/G19986.1

    CrossRef Google Scholar

    Reed L E. 1981. The airborne electromagnetic discovery of the Detour zinc-copper-silver deposit, northwestern Quebec[J]. Geophysics, 46(9):1278-1290. doi: 10.1190/1.1441266

    CrossRef Google Scholar

    Reeve J S, Cross K C, Smith R N, et al. 1990. Olympic Dam copper-uranium-gold-silver deposit[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 2:1009-1035.

    Google Scholar

    Reich M, Parada M A, Palacios C, et al. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications[J]. Mineralium Deposita, 38(7):876-885. doi: 10.1007/s00126-003-0369-9

    CrossRef Google Scholar

    Richards J P, Kerrich R. 1993. The Porgera gold mine, Papua New Guinea; magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit[J]. Economic Geology, 88(5):1017-1052. doi: 10.2113/gsecongeo.88.5.1017

    CrossRef Google Scholar

    Richards, J.P., Wilkinson, D., Ullrich, T..2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101(8): 1455-1496.

    Google Scholar

    Richardson S V, Kesler S E, Essene E J, et al. 1986. Origin and geochemistry of the Chapada Cu-Au deposit, Goias, Brazil; a metamorphosed wall-rock porphyry copper deposit[J]. Economic Geology, 81(8):1884-1898. doi: 10.2113/gsecongeo.81.8.1884

    CrossRef Google Scholar

    Robi, 周文斌. 1990.新西兰Hauraki金矿田Thames-Tapu地区的矿化, 流体包裹体.[J].华东地质学院学报, (3):12-15.

    Google Scholar

    Rodionov S M, Fredericksen R S, Berdnikov N V, et al. 2014. The Kuranakh epithermal gold deposit (Aldan Shield, East Russia)[J]. Ore Geology Reviews, 59(4):55-65.

    Google Scholar

    Rodionov S M, Fredericksen R S, Berdnikov N V. 2005. The Kuranakh epithermal gold deposit, East Russia[C]//Mineral Deposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, : 1053-1056.

    Google Scholar

    Rosenbaum G, Giles D, Saxon M, et al. 2005. Subduction of the Nazca Ridge and the Inca Plateau:Insights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters, 239(1):18-32.

    Google Scholar

    Rota J C, Ekburg C E. 1988. History and geology outlined for Newmont's Gold Quarry deposit in Nevada[J]. Mining Eng, 40(4):239.

    Google Scholar

    Rota J C. The Gold Quarry Mine: history and general geology[C]//Bulk mineable precious metal deposits of the western United States symposium proceedings. 1987: 49-56.

    Google Scholar

    Ruggieri G, Lattanzi P, Luxoro S S, et al. 1997. Geology, mineralogy, and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy[J]. Economic Geology, 92(1):1-19.

    Google Scholar

    Rush P M, Seegers H J. 1990. Ok Tedi copper-gold deposits[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 2:1747-1754.

    Google Scholar

    Ryan P J. 1996. The Candelaria copper-gold deposit, Chile[M]. University of the Witwatersrand, Economic Geology Research Unit, .

    Google Scholar

    Ryan P, Lawrence A, Jenkins R, et al. 1994. The Candelaria copper-gold deposit, Chile:Congreso Geológico Chileno, 7th[J]. Concepción Actas, 2:1616-1617.

    Google Scholar

    Rye D M, Rye R O. 1974. Homestake gold mine, South Dakota; I, Stable isotope studies[J]. Economic Geology, 69(3):293-317. doi: 10.2113/gsecongeo.69.3.293

    CrossRef Google Scholar

    Safonov Y G, Genkin A D, Vasudev V N, et al. 1984. Genetic features of gold ore deposit at Kolar, Dharwar Craton, India[J]. Journal of the Geological Society of India, 25(3):145-154.

    Google Scholar

    Sánchez, 2006, p. 30; ProInversión-Private Investment Promotion Agency in Peru, 2007

    Google Scholar

    Sander M V, Einaudi M T. 1990. Epithermal deposition of gold during transition from propylitic to potassic alteration at Round Mountain, Nevada[J]. Economic Geology, 85(2):285-311. doi: 10.2113/gsecongeo.85.2.285

    CrossRef Google Scholar

    Sanematsu K, Duncan R, Imai A, et al. 2005. Geochronological Constraints Using 40 Ar/39 Ar Dating on the Mineralization of the Hishikari Epithermal Gold Deposit, Japan[J]. Resource Geology, 55(3):249-266. doi: 10.1111/j.1751-3928.2005.tb00246.x

    CrossRef Google Scholar

    Sanematsu K. 2011. Caspiche porphyry Au-Cu deposit in the Maricunga belt, northern Chile[J].資源地質, 61:VⅡ-VⅢ.

    Google Scholar

    Savage K S, Tingle T N, O'Day P A, et al. 2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California[J]. Applied Geochemistry, 15(8):1219-1244. doi: 10.1016/S0883-2927(99)00115-8

    CrossRef Google Scholar

    Sazonov A M, Ananyev A A, Poleva T V, et al. 2010. Gold-ore metallogeny of the Yenisey Ridge:geological-structural province, structural types of ore fields[J]. Journal of Siberian Federal University. Engineering & Technologies, 4(3):371-395.

    Google Scholar

    Sazonov A M, Gertner I F, Zvyagina E A, et al. Ore-forming Сonditions of the Blagodat Gold Deposit in the Riphean Metamorphic Rocks of the Yenisey Ridge According to Geochemical and Isotopic Data[J]. 2009.

    Google Scholar

    Schaubs P M, Zhao C. 2002. Numerical models of gold-deposit formation in the Bendigo-Ballarat Zone, Victoria[J]. Australian Journal of Earth Sciences, 49(6):1077-1096. doi: 10.1046/j.1440-0952.2002.00964.x

    CrossRef Google Scholar

    Schwartz M O, Oberthür T, Amanor J, et al. 1992. Fluid inclusion re-equilibration and PTX constraints on fluid evolution in the Ashanti gold deposit, Ghana[J]. European Journal of Mineralogy, 4(5):1017-1033. doi: 10.1127/ejm/4/5/1017

    CrossRef Google Scholar

    Seedorff, E., Dilles, J. H., Proffett, J. M, Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A. and Barton, M. D. Porphyry Deposits: Characteristics and Origin of Hypogene Features. Economic Geology. 100th Anniversary Volume. 2005, 251-298.

    Google Scholar

    Sexton M A. 1994. Geophysical characteristics of the Telfer gold deposits, Western Australia[J]. Exploration Geophysics, 25(3):165-165.

    Google Scholar

    SHAVER S A. THE SIERRA GORDA PORPHYRY CU-MO (AU) DEPOSIT, REGION Ⅱ, NORTHERN CHILE, PART 2: INTRUSIVE RELATIONS AND 40AR/39AR AND RE-OS MOLYBDENITE GEOCHRONOLOGY OF THE CATALINA AND 281-ZONE MINERALIZATION CENTERS[C]//2009 Portland GSA Annual Meeting. 2009.

    Google Scholar

    Shaver S A. THE SIERRA GORDA PORPHYRY CU-MO(AU) DEPOSIT, REGION Ⅱ, NORTHERN CHILE, PART 1: ALTERATION, MINERALIZATION, AND FLUID INCLUSIONS[J]. 2009.

    Google Scholar

    Shinohara H, Hedenquist J W. 1997. Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit, Philippines[J]. Journal of Petrology, 38(12):1741-1752. doi: 10.1093/petroj/38.12.1741

    CrossRef Google Scholar

    Significant deposit s of gold, silver, copper, lead, and zinc in the United States.2000. Economic Geology, 95 (3): 618-644.

    Google Scholar

    Sillitoe R H, Tolman J, Kerkvoort G V. 2013. Geology of the Caspiche Porphyry Gold-Copper Deposit, Maricunga Belt, Northern Chile[J]. Economic Geology, 108(4):585-604. doi: 10.2113/econgeo.108.4.585

    CrossRef Google Scholar

    Sillitoe R H. 1973. Geology of the Los Pelambres Porphyry Copper Deposit, Chile[J]. Economic Geology, 68(1):1-10.

    Google Scholar

    Sillitoe R H. 2003. Iron oxide-copper-gold deposits:an Andean view[J]. Mineralium Deposita, 38(7):787-812. doi: 10.1007/s00126-003-0379-7

    CrossRef Google Scholar

    Simmons A T, Tosdal R M, Wooden J L, et al. 2013. Punctuated Magmatism Associated with Porphyry Cu-Mo Formation in the Paleocene to Eocene of Southern Peru[J]. Economic Geology, 108(4):625-639. doi: 10.2113/econgeo.108.4.625

    CrossRef Google Scholar

    Simms P, Grabinsky M, Zhan G. 2007. Modelling evaporation of paste tailings from the Bulyanhulu mine[J]. Canadian Geotechnical Journal, 44(12):1417-1432. doi: 10.1139/T07-067

    CrossRef Google Scholar

    Simpson M P, Mauk J L. 2011. Hydrothermal Alteration and Veins at the Epithermal Au-Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand[J]. Economic Geology, 106(6):945-973. doi: 10.2113/econgeo.106.6.945

    CrossRef Google Scholar

    Stefánsson A, Seward T M, Heinrich C A, et al. 2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J]. Geology, 32(9):761-764. doi: 10.1130/G20629.1

    CrossRef Google Scholar

    Stein M, Hofmann A W. 1994. Mantle plumes and episodic crustal growth[J]. Nature, 372(6501):63-68. doi: 10.1038/372063a0

    CrossRef Google Scholar

    Stepanov V A, Mel'nikov A V, Vakh A S. The Amur Gold Ore Province[J]. 2008.

    Google Scholar

    Stephen G.Peters, Gregory C.Ferdock, Maria B.Woitsekhow skaya, 等. 2000.美国内华达Goldstrike矿区卡林型贝茨金矿同变形的富矿分带(续)[J].地质找矿论丛, 15(2):115-132.

    Google Scholar

    Sugaki A, Kojima S, Shimada N. 1988. Fluid inclusion studies of the polymetallic hydrothermal ore deposits in bolivia[J]. Mineralium Deposita, 23(1):9-15.

    Google Scholar

    Surhone L M, Tennoe M T, Henssonow S F, et al. 2010. Paddington Gold Mine[M]. Betascript Publishing, .

    Google Scholar

    Tarkian M, Koopmann G. 1995. Platinum-group minerals in the Santo Tomas Ⅱ (Philex) porphyry copper-gold deposit, Luzon Island, Philippines[J]. Mineralium Deposita, 30(1):39-47.

    Google Scholar

    Taube A. 1986. The Mount Morgan gold-copper mine and environment, Queensland; a volcanogenic massive sulfide deposit associated with penecontemporaneous faulting[J]. Economic Geology, 81(6):1322-1340. doi: 10.2113/gsecongeo.81.6.1322

    CrossRef Google Scholar

    Teal L, Benavides A. 2011. History and Geologic Overview of the Yanacocha Mining District, Cajamarca, Peru[J]. Economic Geology, 105(7):1173-1190.)

    Google Scholar

    Theriault J, Frostiak J, Welch D. Surface disposal of paste tailings at the Bulyanhulu gold mine, Tanzania[C]//Proceedings of Sudbury. 2003: 265-269.

    Google Scholar

    Thompson T B, Trippel A D, Dwelley P C. 1985. Mineralized veins and breccias of the Cripple Creek district, Colorado[J]. Economic Geology, 80(6):1669-1688. doi: 10.2113/gsecongeo.80.6.1669

    CrossRef Google Scholar

    Thournout F V, Salemink J, Valenzuela G, et al. 1996. Portovelo:a volcanic-hosted epithermal vein-system in Ecuador, South America[J]. Mineralium Deposita, 31(4):269-276. doi: 10.1007/BF02280791

    CrossRef Google Scholar

    Tihor L A, Crockett J H. 1977. Gold distribution in the Kirkland Lake-Larder Lake area, with emphasis on Kerr Addison-type ore deposits-a progress report[J]. Geological Survey of Canada Paper, :363-369.

    Google Scholar

    Tohma Yuki, Imai Akira, Sanematsu Kenzo, et al. 2010. Characteristics and Mineralization Age of the Fukusen No. 1 Vein, Hishikari Epithermal Gold Deposits, Southern Kyushu, Japan[J]. Resource Geology, 60(4):348-358. doi: 10.1111/j.1751-3928.2010.00140.x

    CrossRef Google Scholar

    Tomkins A G, Pattison D R M, Zaleski E. 2004. The Hemlo gold deposit, Ontario:an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation[J]. Economic Geology, 99(6):1063-1084. doi: 10.2113/gsecongeo.99.6.1063

    CrossRef Google Scholar

    U.S. Geological Survey, 2016, Mineral commodity summaries 2016: U.S. Geological Survey, 202 p., http://dx.doi.org/10.3133/70140094.

    Google Scholar

    Ulrich T, Golding S D, Kamber B S, et al. 2003. Different mineralization styles in a volcanic-hosted ore deposit:the fluid and isotopic signatures of the Mt Morgan Au-Cu deposit, Australia[J]. Ore Geology Reviews, 22(1):61-90.

    Google Scholar

    Usmanovich M Z, Alisherovich K A. 2015. Endogenic Cracking of Rocks at Kolchiktau Gold Deposit in Daugiztau Ore Field[J].地学前缘, (S1):243-243.

    Google Scholar

    Utter T. 1980. Rounding of ore particles from the Witwatersrand gold and uranium deposit (South Africa) as an indicator of their detrital origin[J]. Journal of Sedimentary Research, 50(1).

    Google Scholar

    Van Dongen M, Weinberg R F, Tomkins A G, et al. 2010. Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid formation of the Ok Tedi porphyry Cu-Au deposit, Papua New Guinea[J]. Lithos, 114(3):282-292.

    Google Scholar

    Van Dongen M, Weinberg R F, Tomkins A G. 2013. Grade distribution of the giant Ok Tedi Cu-Au deposit, Papau New Guinea[J]. Economic Geology, 108(7):1773-1781. doi: 10.2113/econgeo.108.7.1773

    CrossRef Google Scholar

    Vennemann T W, Muntean J L, Kesler S E, et al. 1993. Stable isotope evidence for magmatic fluids in the Pueblo Viejo epithermal acid sulfate Au-Ag deposit, Dominican Republic[J]. Economic Geology, 88(1):55-71. doi: 10.2113/gsecongeo.88.1.55

    CrossRef Google Scholar

    Vial D S, Dewitt E, Lobato L M, et al. 2007. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil[J]. Ore Geology Reviews, 32(32):511-542.

    Google Scholar

    Vila T, Sillitoe R H. 1991. Gold-rich porphyry systems in the Maricunga Belt, northern Chile[J]. Economic Geology, 86(6):1238-1260. doi: 10.2113/gsecongeo.86.6.1238

    CrossRef Google Scholar

    Voland V B. 1982. The geochemistry of metasomatism tin deposits of the Potosi Type, Bolivia[J]. Chem. Erde, 41:18-32.

    Google Scholar

    Vry V, Wilkinson J, Seguel J, et al. 2010. Multistage Intrusion, Brecciation, and Veining at El Teniente, Chile:Evolution of a Nested Porphyry System[J]. Economic Geology, 105(1):119-153. doi: 10.2113/gsecongeo.105.1.119

    CrossRef Google Scholar

    W, L.J., Berger, B.R., Kurbanov, N.K..1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geology Reviews, 11(4): 175-196.

    Google Scholar

    Walker R J, Bohlke J K, Mcdonough W F, et al. 2007. Effects of Mother Lode-Type Gold Mineralization on 187Os/188Os and Platinum Group Element Concentrations in Peridotite:Alleghany District, California[J]. Economic Geology, 102(6):1079-1089. doi: 10.2113/gsecongeo.102.6.1079

    CrossRef Google Scholar

    Wang X, Cheng Z, Lu Y, et al. 1997. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 58(1):63-72. doi: 10.1016/S0375-6742(96)00052-0

    CrossRef Google Scholar

    Warren I, Archibald D A, Simmons S F. 2008. GEOCHRONOLOGY OF EPITHERMAL Au-Ag MINERALIZATION, MAGMATIC-HYDROTHERMAL ALTERATION, AND SUPERGENE WEATHERING IN THE EL PENON DISTRICT, NORTHERN CHILE[J]. Economic Geology, 103(4):851-864. doi: 10.2113/gsecongeo.103.4.851

    CrossRef Google Scholar

    Warren P I. 2005. Geology, geochemistry, and genesis of the El Peñón epithermal Au-Ag deposit, northern Chile:characteristics of a bonanza-grade deposit and techniques for exploration[J]. Health Technology Assessment, 9(7):1-238, iii-iv.

    Google Scholar

    Wenrich K J, 徐润华. 1985.富铀火山岩的地球化学特征[J].国外铀矿地质, 4:006.

    Google Scholar

    Whalen J B, Britten R M, I McDougall. 1982. Geochronology and geochemistry of the Frieda River prospect area, Papua New Guinea[J]. Economic Geology, 77(3):592-616. doi: 10.2113/gsecongeo.77.3.592

    CrossRef Google Scholar

    Wilde A R, Layer P, Mernagh T, et al. 2001. The Giant Muruntau Gold Deposit:Geologic, Geochronologic, and Fluid Inclusion Constraints on Ore Genesis[J]. Science, 96(5):633-644.

    Google Scholar

    Williams D, Stanton R L, Rambaud F. 1977. The Planes-San Antonio pyritic deposit of Rio Tinto, Spain:its nature, environment and genesis[J]. Geological Society, London, Special Publications, 7(1):152-152. doi: 10.1144/GSL.SP.1977.007.01.17

    CrossRef Google Scholar

    Williams-Jones A E. 2005. 100th Anniversary Special Paper:Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits[J]. Economic Geology, 100(7):1287-1312. doi: 10.2113/gsecongeo.100.7.1287

    CrossRef Google Scholar

    Xie X, Wang X, Xu L, et al. 1999. Orientation study of strategic deep penetration geochemical methods in the central Kyzylkum desert terrain, Uzbekistan[J]. Journal of Geochemical Exploration, 66(1):135-143.

    Google Scholar

    Yakubchuk, A.2014., Stein, H., Wilde, A.. Results of pilot Re-Os dating of sulfides from the Sukhoi Log and Olympiada orogenic gold deposits, Russia. Ore Geology Reviews, 59(3): 21-28.

    Google Scholar

    Yigit O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny:implications for future mineral exploration[J]. Economic Geology, 104(1):19-51. doi: 10.2113/gsecongeo.104.1.19

    CrossRef Google Scholar

    Yigit, O.2006. Gold in Turkey-a missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2): 147-179.

    Google Scholar

    ZHAO X, XUE C. 2014. Geological Controls of Orogenic Gold Mineralization at Zarmitan, Uzbekistan Tianshan[J]. Acta Geologica Sinica (English Edition), 88(z2):143-144.

    Google Scholar

    А.М.Саэонов, 莫耀文. 1992.叶尼塞山变质地层中的硫化物-石英金矿床[J].地质调查与研究, (1):72-78.

    Google Scholar

    曾勇, 郭维民, 姚春彦, 等. 2013.巴西卡拉加斯地区氧化铁型铜-金矿床研究进展[J].地质科技情报, (5):72-78.

    Google Scholar

    陈喜峰, 彭润民, 刘家军, 等. 2010.吉尔吉斯斯坦库姆托尔超大型金矿床地质特征[J].黄金, 31(12):15-19.

    Google Scholar

    戴自希, 王家枢. 2004.矿产勘查百年[MJ].北京: 地震出版社,

    Google Scholar

    丁式江. 1996.绿岩带型金矿研究的进展[J].东华理工大学学报(自然科学版), (3):231-236.

    Google Scholar

    方俊钦, 聂凤军, 徐备, 陈鹏, 童勤龙, 2013.蒙古国欧玉陶勒盖斑岩型铜(金)矿田的找矿新进展.地质科技情报(5).

    Google Scholar

    方维萱, 李建旭. 2012.智利铁氧化物铜金矿床分布规律、控制因素与成矿演化[C]//中国地质学会科技情报专业委员会学术研讨会.

    Google Scholar

    方维萱, 柳玉龙, 张守林, 等. 2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报:自然科学版, 39(3):404-413.

    Google Scholar

    冯蕾. 2010.可行性研究报告称DetourLake金矿有可能成为加拿大的第二大金矿[J].中国贵金属, (6):50-50.

    Google Scholar

    高乾兰. 1991.智利低温热液金矿床的成矿特征及类型[J].黄金科学技术, (7):20-21.

    Google Scholar

    韩桂春, P.怀特韦. 1994.多姆金矿的新局面——新扩建计划为古老的多姆金矿带来光辉前景[J].矿业工程, (1):36-38.

    Google Scholar

    贾润幸, 方维萱, 隗合明, 等. 2013.加拿大安大略省地质矿产资源概况[J].矿产勘查, 4(5):565-571.

    Google Scholar

    江思宏, 聂凤军, 刘翼飞. 2008.西藏马攸木金矿床的矿床类型讨论.矿床地质, 27(2): 220-229.

    Google Scholar

    金铜标. 2011.菲律宾远东南铜金矿床地质统计学资源估算[J].有色金属(矿山部分), (2):57-63.

    Google Scholar

    李上森. 1991.印度科拉尔太古宙片岩带金矿床的地质背景、矿物学、地球化学及其成因[J].地质调查与研究, (2):72-81.

    Google Scholar

    李尚林, 罗彦军, 马中平, 等. 2014.印度共和国主要金矿及其地质特征[C]//中国地球科学联合学术年会.

    Google Scholar

    李延祥. 2000.里奥廷托古矿[J].金属世界, 3:28-32.

    Google Scholar

    刘春涌, 王永江. 2007.初论中亚黑色岩系型金矿床的基本特征-兼论新疆黑色岩系型金矿找矿方向[J].新疆地质, 25(1):34-39.

    Google Scholar

    刘春涌. 2005a.哈萨克斯坦阿克巴凯特大型金矿床.中亚信息: 20-23.

    Google Scholar

    刘春涌. 2005b.哈萨克斯坦巴克尔奇克等大型以上规模金矿床.中亚信息(4): 20-24.

    Google Scholar

    刘春涌. 2005c.哈萨克斯坦的主要金矿床.中亚信息: 18-20.

    Google Scholar

    刘春涌. 2004.乌兹别克斯坦科奇布拉克超大型金矿床和金矿资源潜力.中亚信息, (10): 27-28.

    Google Scholar

    刘亮生, 王坚. 1994.秘鲁, 墨西哥和智利的新黄金项目[J].世界采矿快报, 10(25):18-20.

    Google Scholar

    刘伟, 宋国明, 智利矿产资源开发与投资环境, 国土资源情报, 2011, 11: 30-35.

    Google Scholar

    刘益康, 徐叶兵. 2003.蒙古Oyu Tolgoi斑岩铜金矿的勘查[J].地质与勘探, 39(1):1-4.

    Google Scholar

    罗明强. 2011.菲律宾斑岩型铜矿成矿背景[J].河南理工大学学报:自然科学版, 30(1):47-54.

    Google Scholar

    毛景文, 张作衡, 王义天, 等. 2012.国外主要矿床类型, 特点及找矿勘查[M].地质出版社, .

    Google Scholar

    毛景文. 2001.与黑色页岩系有关的矿床研究的动向.矿床地质20(4): 402-403.

    Google Scholar

    毛伦锦. 1989.西非的金资源[J].世界核地质科学, (2):1-6.

    Google Scholar

    孟广路, 王斌, 李宝强, 曹积飞, 范堡程, 2013.乌兹别克斯坦穆龙套金矿床研究进展.地质科技情报: 160-166.

    Google Scholar

    缪卫东. 1993.智利北部Marte斑岩金矿床[J].世界核地质科学, (3):99.

    Google Scholar

    聂凤军, 江思宏, 白大明, 侯万荣, 刘翼飞, 2010.蒙古国南部及邻区金属矿床类型及其时空分布特征.地球学报, 31(3): 267-288.

    Google Scholar

    齐金忠, 李莉, 郭晓东. 2000.大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征[J].矿床地质, 19(2):116-125.

    Google Scholar

    任军平, 许康康, 相振群, 等. 2015.南非维特沃特斯兰德盆地绍斯迪普金矿床地质特征、成矿模式和找矿模型[J].地质通报, 34(6):1217-1226.

    Google Scholar

    商木元, 李永明. 1997.加拿大富金火山块状硫化物矿床[J].冶金地质动态, (9):6-8.

    Google Scholar

    申萍, 潘鸿迪, Eleonora, S., 2015.中亚成矿域斑岩铜矿床基本特征.岩石学报, 31(2): 315-332.

    Google Scholar

    沈保丰. 1988.早前寒武纪花岗岩-绿岩地体中金的成矿作用[J].地质找矿论丛, (2):1-11.

    Google Scholar

    施俊法, 李友枝, 金庆花. 2006.世界矿情(亚洲卷).北京: 地质出版社, 1-514.

    Google Scholar

    施俊法, 唐金荣, 周平等. 2010.世界找矿模型与矿产勘查[M].地质出版社, .

    Google Scholar

    石原舜三, 王春宏. 1993.世界最大的金矿山-Grasberg矿床[J].冶金地质动态, (3):43-44.

    Google Scholar

    斯顿, 房俭生. 1998.阿伦布雷拉铜金矿[J].矿业工程, (6):12-14.

    Google Scholar

    宋国明, 2007.乌兹别克斯坦矿业投资的机遇与风险, 中国金属通报, 35, 32-34.

    Google Scholar

    孙希. 1998.巴布亚新几内亚波尔盖拉(Porgera)金矿床流体化学及其作用[J].世界地质, (1):26-39.

    Google Scholar

    谭克仁. 1998.苏霍依-洛格金矿床地质特征及控矿规律[J].黄金科学技术, 6(4):29-37.

    Google Scholar

    汤葵联. 1991.南非维特瓦特斯兰德盆地金成因的埋藏前吸附模式[J].国外地质科技, (7):41-44.

    Google Scholar

    王登红. 1994.多米尼加共和国PuebloViejo浅成低温热液硫酸盐Au-Ag矿床(简介)[J].地质与资源, (4):317-319.

    Google Scholar

    王洪黎, 李艳军, 徐遂勤, 等. 2009.浅成低温热液型金矿床若干问题的最新研究进展[J].黄金, 30(7):9-13.

    Google Scholar

    王佳新, 聂凤军, 张雪旎, 等. 2015.智利埃尔特尼恩特斑岩型铜-钼矿床[J].矿床地质, 34(1):200-203.

    Google Scholar

    王杰, 任军平, 何胜飞, 等.2014.南非主要金矿集区研究现状及存在问题[J].地质论评, 60(5):997-1008.

    Google Scholar

    王琳. 2001.俄罗斯的金矿床.国外铀金地质. 18(4): 217-226.

    Google Scholar

    王艳君. 1998.印度尼西亚松巴哇岛西南Batu Hijau斑岩铜-金矿例研究[J].物探化探译丛, (2):34-38.

    Google Scholar

    吴健民, 黄永平. 1998.稀矿山式铁铜矿床与奥林匹克坝式铜多金属矿床的对比研究[J].矿产与地质, (2):79-85.

    Google Scholar

    吴科锐, 聂凤军, 张晓康. 2015.欧洲最大的金矿床——罗马尼亚的罗西亚-蒙塔纳金矿床[J].矿床地质, 34(4):847-850.

    Google Scholar

    武广, 陈毓川, 陈衍景, 2010.哈萨克斯坦北东天山浅成低温热液型金矿床成矿时代及构造背景.岩石学报, 26: 3683-3695.

    Google Scholar

    信迪, 刘京, 李雷, 等. 2014.巴布亚新几内亚奥克泰迪铜金矿床成矿特征和控制因素[J].地质通报, 33(z1):299-307.

    Google Scholar

    徐年生. 2001.巴利克黄金公司在坦桑尼亚发现布里燕胡鲁(Bulyanhulu)大型金矿[J].国外黄金参考, (B12):14-17.

    Google Scholar

    许鹏秋. 1997. Salsigne金矿-法国西南部的一个世界级金矿[J].国外黄金参考, (10):26-27.

    Google Scholar

    薛春纪 et al., 2013.乌兹别克斯坦Almalyk斑岩铜矿田成矿时代及其地质意义.地学前缘, 20(2).

    Google Scholar

    薛春纪, 赵晓波, 莫宣学. 2016.中亚成矿域斑岩铜金成矿的地质环境问题[J].岩石学报, 5:001.

    Google Scholar

    杨培章. 1989.巴布亚新几内亚的金矿床[J].黄金科学技术, (2):32-34.

    Google Scholar

    姚华舟, 朱章显, 韦延光, 杨振强, 吴健辉, 2010.巽他群岛-新几内亚岛地区地质与矿产.北京: 地质出版社: 1-277.

    Google Scholar

    叶子裕. 1986.芒特摩根金铜矿床蚀变围岩的地球化学异常特征[J].桂林理工大学学报, (2):82.

    Google Scholar

    苑丽. 1997.美国西部克罗拉多Cripple Creek地区浅成低温金-碲化物矿床成因及相关之碱性火成岩[J].地质与资源, (02).

    Google Scholar

    张广纯, 杨兵, 秦秀峰, 等. 2014.马里金矿特征、成矿规律及找矿远景分析[J].矿产勘查, 5(2):389-395.

    Google Scholar

    张洪瑞, 侯增谦, 杨志明. 2010.特提斯成矿域主要金属矿床类型与成矿过程[J].矿床地质, 29(1):113-133.

    Google Scholar

    张洪瑞, 杨志明, 宋玉财. 2013.伊朗萨尔切什梅铜-钼-金矿床研究新进展.地质科技情报, (5)167-173.

    Google Scholar

    张家骥, 陈毓川. 1984.深入开展典型矿床研究努力提高地质找矿效果[J].中国地质, (5):6-9.

    Google Scholar

    张家骥. 1988.日本的最大金矿——菱刈金矿简介[J].中国地质, 1:013.

    Google Scholar

    张键元. 1989.美国宾厄姆露天铜矿考察报告[J].国外金属矿山, (10):21-28.

    Google Scholar

    张立生. 2002.科迪勒拉山系中的铜矿资源[J].矿床地质, (S1):90-93.

    Google Scholar

    张立生. 1999.涅日达宁金矿床(俄罗斯萨哈-雅库特)的矿物-地球化学特点和形成条件[J].世界核地质科学, (1):52-62.

    Google Scholar

    张立生. 1999.伊比利亚黄铁矿带火山成因块状硫化物矿床中两种类型金矿化[J].世界核地质科学, (3):230-235.

    Google Scholar

    张立新(译), 王睿(译), 王尚彦(校). 2008.沉积喷流型金矿[J].贵州地质, 25(1):74-79.

    Google Scholar

    张秋明, 2003.乌拉尔碰撞造山带地球动力学与成矿作用研究.国土资源情报(4): 41-47.

    Google Scholar

    张伟波, 聂凤军, 王立胜, 等. 2013.印度尼西亚格拉斯贝格铜金矿床研究新进展[J].地质科技情报, (5):112-117.

    Google Scholar

    张新元, 聂秀兰. 2010.蒙古国南部欧玉陶勒盖铜(金)矿田找矿勘查与成矿理论研究新进展[J].地球学报, 31(3):111-120.

    Google Scholar

    张雪旎, 聂凤军, 王佳新. 2014.希腊斯克瑞斯铜-金-铂族元素矿床[J].矿床地质, 33(5).

    Google Scholar

    张允. 1997.加纳阿散蒂带金矿化中的高CO2含量流体包裹体是新类别成矿流体吗?[J].国土资源信息化, (12):19-21.

    Google Scholar

    赵宇安, 刘海田, 张伟波, 等. 2013.奥林匹克坝铜-铀-金-银-稀土矿床最新研究[J].地质科技情报, (5):106-111

    Google Scholar

    朱奉三. 1987.北美最大的黄金产地——霍姆斯塔克金矿考察记实[J].地质科技情报, 2:000.

    Google Scholar

    朱华平, 范文玉, 王宏, 林方成. 2013.老挝色潘铜金矿床研究新进展.地质科技情报, (5): 182-187.

    Google Scholar

    朱意萍, 王天刚, 姚仲友, 等.2014.潘古纳斑岩型铜金矿床的地质和矿化特征, 年中国地球科学联合学术年会——专题59: 境外地质矿产调查评价论文集, 2628-2630.

    Google Scholar

    佐藤兴平, 白桦. 1984.安第斯山中部智利的埃尔·印第奥金矿床[J].地质科技情报, (1):104-107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(2263) PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

  • on this site
  • on Google Scholar

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint