Abzalov M. 2007. Zarmitan granitoid-hosted gold deposit, Tian Shan belt, Uzbekistan[J]. Economic Geology, 102(3):519-532. doi: 10.2113/gsecongeo.102.3.519
CrossRef Google Scholar
|
ALEKSANDROV A L, OLOVYASHNIKOV V M, POTORCHENKO A N. 1975. Florencite from Bodaybo gold-ore field as an indicator of hydrothermal processes:Transactions (Doklady), Academy of Sciences of the USSR[J]. Earth Science Sections, 224:110-112.
Google Scholar
|
Ansdell K M, Abeleira A, Ivanov S. 1999. Structural evolution and vein paragenesis at the Kumtor gold deposit, Kyrgyzstan[J]. Mineral deposits:Processes to processing:Rotterdam, Balkema, 2:1375-1378.
Google Scholar
|
Arehart G B, Donelick R A. 2006. Thermal and isotopic profiling of the Pipeline hydrothermal system:Application to exploration for Carlin-type gold deposits[J]. Journal of Geochemical Exploration, 91(1):27-40.
Google Scholar
|
Arehart G B. 1996. Characteristics and origin of sediment-hosted disseminated gold deposits:a review[J]. Ore Geology Reviews, 11(6):383-403. doi: 10.1016/S0169-1368(96)00010-8
CrossRef Google Scholar
|
Arenson L U, Jakob M, Wainstein P. Effects of Dust Deposition on Glacier Ablation and Runoff at the Pascua-Lama Mining Project, Chile and Argentina[C]//Engineering Geology for Society and Territory. 2014: 27-32.
Google Scholar
|
Arif J, Baker T. 2004. Gold paragenesis and chemistry at Batu Hijau, Indoneisa:implications for gold-rich porphyry copper deposits[J]. Mineralium Deposita, 39(5-6):523-535. doi: 10.1007/s00126-004-0433-0
CrossRef Google Scholar
|
Baldwin J T, Swain H D, Clark G H, et al. 1978. Geology and grade distribution of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J]. Economic Geology, 73 (5).690-702.
Google Scholar
|
Barrell J. 1907. Geology of the Marysville Mining District, Montana:a study of igneous intrusion and contact metamorphism[M]. US Government Printing Office, .
Google Scholar
|
Berger B R, Henley R W, Lowers H A, et al. 2014. The Lepanto Cu-Au deposit, Philippines:A fossil hyperacidic volcanic lake complex[J]. Journal of Volcanology & Geothermal Research, 271(2):70-82.
Google Scholar
|
Bissig T, Clark A H, Rainbow A, et al. 2015. Physiographic and tectonic settings of high-sulfidation epithermal gold-silver deposits of the Andes and their controls on mineralizing processes[J]. Ore Geology Reviews, 65(65):327-364.
Google Scholar
|
Blissett J, Bennett C, Donohoe J, et al. 2014. Mantle Contribution for the Formation of Giant Ore Deposits:Case Study from the Kalmakyr and Muruntau Ore Districts, Tienshan, Uzbekistan[J]. Acta Geologica Sinica, 88(s2):887-888. doi: 10.1111/1755-6724.12376_12
CrossRef Google Scholar
|
BONHAM H F Jr. Models for volcanic-hosted epithermal precious metal deposits: Areview[A]. International Volcanological Congress, Symposium 5[C]. Hamilton, NewZealand, February 1986. 13-17.
Google Scholar
|
Bortnikov N S, Gamyanin G N, Vikent'Eva O V, et al. 2007. Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia[J]. Geology of Ore Deposits, 49(2):87-128. doi: 10.1134/S1075701507020018
CrossRef Google Scholar
|
Boulter C A, Fotios M G, Phillips G N. 1987. The Golden Mile, Kalgoorlie; a giant gold deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid[J]. Economic Geology, 82(7):1661-1678. doi: 10.2113/gsecongeo.82.7.1661
CrossRef Google Scholar
|
Boyle R W. 1959. The geochemistry, origin, and role of carbon dioxide, water, sulfur, and boron in the Yellowknife gold deposits, Northwest Territories, Canada[J]. Economic Geology, 54(8):1506-1524. doi: 10.2113/gsecongeo.54.8.1506
CrossRef Google Scholar
|
Boyle R W. 1960. The Geology, Geochemistry, and Origin of the Gold, Deposits of the Yellowknife District[M]. Department of mines and technical surveys, .
Google Scholar
|
Bozkaya G, Banks D A. 2014. Epithermal Base-metal-Au Deposits, NW Turkey:PT-Composition of the Ore Fluids[J]. Acta Geologica Sinica, 88(2):1064-1065.
Google Scholar
|
C.A.Boulter, M.G.Fotios, G.N.Phillips, 等. 1991.卡尔古利区戈尔登迈尔:构造引起的含金变质流体的渗入:位于韧性剪切带的大型金矿床[J].世界地质, (2):124-137.
Google Scholar
|
Cabral A R, Lehmann B, Kwitko R, et al. 2002. The Serra Pelada Au-Pd-Pt deposit, Carajás mineral province, northern Brazil:reconnaissance mineralogy and chemistry of very high grade palladian gold mineralization[J]. Economic geology, 97(5):1127-1138.
Google Scholar
|
Caddey S W. 1992. The Homestake Gold Mine:an early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota[M]. US Department of the Interior, US Geological Survey, .
Google Scholar
|
Cameron E M, Hattori K. 1985. The Hemlo gold deposit, Ontario:A geochemical and isotopic study[J]. Geochimica et Cosmochimica Acta, 49(10):2041-2050. doi: 10.1016/0016-7037(85)90062-6
CrossRef Google Scholar
|
Camprubí A, Albinson T. 2007. Epithermal deposits in México-Update of current knowledge, and an empirical reclassification[J]. Special Paper of the Geological Society of America, 422(4):377-415. doi: 10.1130/2007.2422(14)
CrossRef Google Scholar
|
Cannell J, Cooke D, Walshe J, et al.2005., Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100:979-1003. doi: 10.2113/gsecongeo.100.5.979
CrossRef Google Scholar
|
Carman G D. 2003. Geology, mineralization, and hydrothermal evolution of the Ladolam gold deposit, Lihir Island, Papua New Guinea[J]. Special Publication-Society of Economic Geologists, 10:247-284.
Google Scholar
|
Carpenter R L, Duke N A. 2004. Geological Setting of the West Meliadine Gold Deposits, Western Churchill Province, Nunavut, Canada[J]. Exploration and Mining Geology, 13(1-4):49-65. doi: 10.2113/gsemg.13.1-4.49
CrossRef Google Scholar
|
Cerpa L M, Bissig T, Kyser K, et al. 2013. Lithologic controls on mineralization at the Lagunas Norte high-sulfidation epithermal gold deposit, northern Peru[J]. Mineralium Deposita, 48(5):653-673. doi: 10.1007/s00126-013-0455-6
CrossRef Google Scholar
|
Charchaflie D, Tosdal R M, Mortensen J K. 2007. Geologic Framework of the Veladero High-Sulfidation Epithermal Deposit Area, Cordillera Frontal, Argentina[J]. Economic Geology, 102(2):171-192. doi: 10.2113/gsecongeo.102.2.171
CrossRef Google Scholar
|
Chernyshev I V, Bortnikov N S, Chugaev A V, et al. 2011. Metal sources of the large Nezhdaninsky orogenic gold deposit, Yakutia, Russia:Results of high-precision MC-ICP-MS analysis of lead isotopic composition supplemented by data on strontium isotopes[J]. Geology of Ore Deposits, 53(5):353-373. doi: 10.1134/S1075701511050035
CrossRef Google Scholar
|
Christie A B, Simpson M P, Brathwaite R L, et al. 2007. Epithermal Au-Ag and Related Deposits of the Hauraki Goldfield, Coromandel Volcanic Zone, New Zealand[J]. Economic Geology, 102(5):785-816. doi: 10.2113/gsecongeo.102.5.785
CrossRef Google Scholar
|
Claveria R J R. 2001. Mineral Paragenesis of the Lepanto Copper and Gold and the Victoria Gold Deposits, Mankayan Mineral District, Philippines[J]. Resource Geology, 51(2):97-106. doi: 10.1111/j.1751-3928.2001.tb00084.x
CrossRef Google Scholar
|
Cline J S, Hofstra A A. 2000. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA[J]. European Journal of Mineralogy, 12(1):195-212. doi: 10.1127/ejm/12/1/0195
CrossRef Google Scholar
|
Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801
CrossRef Google Scholar
|
Cooke, D.1996. R., Mcphail, D.C., Bloom, M.S., . Epithermal gold mineralization, Acupan, Baguio District, Philippines; geology, mineralization, alteration, and the thermochemical environment of ore deposition. Economic Geology.
Google Scholar
|
Corbett G. 2002. Epithermal gold for explorationists[J]. AIG Journal-Applied Geoscientific Practice and Research in Australia, April:1-26.
Google Scholar
|
Cox S F, Ruming K. 2004. The St Ives mesothermal gold system, Western Australia-a case of golden aftershocks?[J]. Journal of Structural Geology, 26(6):1109-1125.
Google Scholar
|
Cunningham C G, Zartman R E, Mckee E H, et al. 1996. The age and thermal history of Cerro Rico de Potosi, Bolivia[J]. Mineralium Deposita, 31(5):374-385. doi: 10.1007/BF00189185
CrossRef Google Scholar
|
D.C.Harris, 王魁元. 1988.加拿大安大略赫姆洛的赫姆洛金矿床主矿的矿物学和地球化学[J].地质调查与研究, (4):50-61.
Google Scholar
|
Davidson J, Mpodozis C. 1991. Regional geologic setting of epithermal gold deposits, Chile[J]. Economic Geology, 86(6):1174-1186. doi: 10.2113/gsecongeo.86.6.1174
CrossRef Google Scholar
|
Davies R C, Williams P J. 2005. The El Galeno and Michiquillay porphyry Cu-Au-Mo deposits:geological descriptions and comparison of Miocene porphyry systems in the Cajamarca district, northern Peru[J]. Mineralium Deposita, 40(5):598-616. doi: 10.1007/s00126-005-0026-6
CrossRef Google Scholar
|
de Ronde C E J, Faure K, Bray C J, et al. 2000. Round Hill shear zone-hosted gold deposit, Macraes Flat, Otago, New Zealand:evidence of a magmatic ore fluid[J]. Economic Geology, 95(5):1025-1048.
Google Scholar
|
Demange M, Pascal M L, Raimbault L, et al. 2006. The Salsigne Au-As-Bi-Ag-Cu Deposit, France[J]. Economic Geology, 101(1):199-234. doi: 10.2113/gsecongeo.101.1.199
CrossRef Google Scholar
|
Departamento Nacional de Produção Mineral, 2007a, p. 10; Ferraz, 2007, p. 4; Yamana Gold Inc., 2007
Google Scholar
|
Deptuck R, Squair H, Wierzbicki V. 1982. Geology of the Detour zinc-copper deposits, Brouillan Township, Quebec[J]. Precambrian sulfide deposits. Geological Association of Canada, Special Paper, 25:319-342.
Google Scholar
|
Deyell C L, Leonardson R, Rye R O, et al. 2005. Alunite in the Pascua-Lama High-Sulfidation Deposit:Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry[J]. Economic Geology, 100(1):131-148. doi: 10.2113/100.1.0131
CrossRef Google Scholar
|
Distler VV, Yudovskaya MA, Mitrofanov GL, Prokof'Ev VY, Lishnevskii EN. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia. Ore Geology Reviews 2004, 24: 7-44.
Google Scholar
|
Drew L J, Berger B R, Kurbanov N K. 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan[J]. Ore Geology Reviews, 11(4):175-196. doi: 10.1016/0169-1368(95)00033-X
CrossRef Google Scholar
|
E.A.Elevatorski, 周维康. 1986.火山成因金矿床[J].国外火山地质, (1):31-37.
Google Scholar
|
Eastoe C J. 1983. Sulfur isotope data and the nature of the hydrothermal systems at the Panguna and Frieda porphyry copper deposits, Papua New Guinea[J]. Economic Geology, 78(2):201-213. doi: 10.2113/gsecongeo.78.2.201
CrossRef Google Scholar
|
Eliopoulos D G, Economou-Eliopoulos M. 1991. Platinum-group element and gold contents in the Skouries porphyry copper deposit, Chalkidiki Peninsula, northern Greece[J]. Economic Geology, 86(4):740-749. doi: 10.2113/gsecongeo.86.4.740
CrossRef Google Scholar
|
Etoh J, Izawa E, Taguchi S. 2002. A Fluid Inclusion Study on Columnar Adularia from the Hishikari Low-sulfidation Epithermal Gold Deposit, Japan[J]. Resource Geology, 52(1):73-78. doi: 10.1111/j.1751-3928.2002.tb00119.x
CrossRef Google Scholar
|
Etoh J, Izawa E, Watanabe K, et al. 2002. Bladed quartz and its relationship to gold mineralization in the Hishikari low-sulfidation epithermal gold deposit, Japan[J]. Economic Geology, 97(8):1841-1851. doi: 10.2113/gsecongeo.97.8.1841
CrossRef Google Scholar
|
Fifarek R H, Rye R O. 2005. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru:influence of hydrodynamics on SO 4 2--H 2 S sulfur isotopic exchange in magmatic-steam and steam-heated environments[J]. Chemical Geology, 215(1):253-279.
Google Scholar
|
Fleming A W, Handley G A, Williams K L, et al. 1986. The Porgera gold deposit, Papua New Guinea[J]. Economic Geology, 81(3):660-680. doi: 10.2113/gsecongeo.81.3.660
CrossRef Google Scholar
|
FooST, Hays Jr R C, McCormack J K. Geology and mineralization of the Pipeline gold deposit, Lander County, Nevada[C]//Geology and Ore Deposits of the American Cordillera: Geological Society of Nevada Symposium Proceedings. 1996, 1: 95-109.
Google Scholar
|
Fredericksen R S. Geology of Kuranakh deposit ore field[C]//Russia: Alaska Miners Association 1998 Annual Convention Abstracts, Anchorage. 1998: 60-62.
Google Scholar
|
Frei R. 1995. Evolution of mineralizing fluid in the porphyry copper system of the Skouries Deposit, Northeast Chalkidiki (Greece); evidence from combined Pb-Sr and stable isotope data[J]. Economic Geology, 90(4):746-762. doi: 10.2113/gsecongeo.90.4.746
CrossRef Google Scholar
|
G.Siddeley, R.Araneda, 田书文. 1989.智利的埃尔印第奥-坦博金矿床[J].地质调查与研究, (1):61-74.
Google Scholar
|
Gair J E. Geology and ore deposits of the Nova Lima and Rio Acima quadrangles, Minas Gerais, Brazil[R]. 1962.
Google Scholar
|
Gao Z L, Kwak T A P. 1995. Turbidite-hosted gold deposits in the Bendigo-Ballarat and Melbourne Zones, Australia. I. Geology, Mineralization, stable isotopes, and implications for exploration[J]. International Geology Review, 37(10):910-944. doi: 10.1080/00206819509465433
CrossRef Google Scholar
|
Goellnicht N M, Groves D I, McNaughton N J, et al. 1989. An epigenetic origin for the Telfer gold deposit[J]. Econ. Geol. Monogr, 6:151-167.
Google Scholar
|
Goldfarb R J, Ayuso R, Miller M L, et al. 2004. The late Cretaceous Donlin Creek gold deposit, Southwestern Alaska:Controls on epizonal ore formation[J]. Economic Geology, 99(4):643-671 doi: 10.2113/gsecongeo.99.4.643
CrossRef Google Scholar
|
Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time:a global synthesis[J]. Ore Geology Reviews, 18(1-2):1-75. doi: 10.1016/S0169-1368(01)00016-6
CrossRef Google Scholar
|
Goldfarb R, Baker T, Dube B, et al. 2005. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes[J]. Economic Geology 100th Anniversary Volum, . 407-450
Google Scholar
|
Goldie M. 2002. Self-potentials associated with the Yanacocha high-sulfidation gold deposit in Peru[J]. Geophysics, 67(3):684-689. doi: 10.1190/1.1484511
CrossRef Google Scholar
|
Goryachev N A, Vikent'Eva O V, Bortnikov N S, et al. 2008. The world-class Natalka gold deposit, northeast Russia:REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore[J]. Geology of Ore Deposits, 50(5):362-390. doi: 10.1134/S1075701508050024
CrossRef Google Scholar
|
Goryachev, N. A., Pirajno, F., . Gold deposits and gold metallogeny of Far East Russia. Ore Geology Reviews, 59(0): 123-151.
Google Scholar
|
Greenhoot C A. 2000. Geology of the metates gold-silver deposit, Durango, Mexico[J].
Google Scholar
|
Groves D I, Goldfarb R J, Gebre-Mariam M, et al. 1998. Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5):7-27. doi: 10.1016/S0169-1368(97)00012-7
CrossRef Google Scholar
|
Groves D I. 2003. Gold deposits in metamorphic belts:Overview of current understanding, outstanding problems, future research, and exploration significance[J]. Economic Geology, 98(98):1-29.
Google Scholar
|
Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia[J]. Mineralium Deposita, 28(6):366-374. doi: 10.1007/BF02431596
CrossRef Google Scholar
|
Gumiel P, Martín-Izard A, Arias M, et al. 2008. Geometrical analysis of the Punta del Pedrón shear zone (Asturias, Spain):Implications related to exploration of Salave Gold-type mineralization[J]. Journal of Structural Geology, 30(3):354-365. doi: 10.1016/j.jsg.2007.11.009
CrossRef Google Scholar
|
Hancock K D, Simandl G J. 1992. Geology of the Marysville Magnesite Deposit, Southeastern British Columbia[J]. British Columbia Ministry of Energy, Mines and Petroleum Resources, :71-80.
Google Scholar
|
Hancock M C, Robertson I G, Booth G W. 1990. Paddington gold deposits[J]. Geology of the Mineral Deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, :395-400.
Google Scholar
|
Harris A C, Kamenetsky V S, White N C, et al. 2004. Volatile Phase Separation in Silicic Magmas at Bajo de la Alumbrera Porphyry Cu-Au Deposit, NW Argentina[J]. Resource Geology, 54(3):341-356. doi: 10.1111/j.1751-3928.2004.tb00210.x
CrossRef Google Scholar
|
HEALDP, FOLEYNK, HAYBADO. 1987. Comparative anatomy of volcanic-hosted epithermal deposits-Acid sulphate and adularia-sericitetypes[J]. Economic Geology, 80:1-26.
Google Scholar
|
Hede, 苑丽华. 1999.以侵入岩体为中心的热液系统的演化:菲律宾Lepanto远东南的斑岩型?…[J].贵金属地质, (4):251-252.
Google Scholar
|
Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 93(4):373-404. doi: 10.2113/gsecongeo.93.4.373
CrossRef Google Scholar
|
Heinhorst J, Lehmann B, Ermolov P, et al. 2000. Paleozoic crustal growth and metallogeny of Central Asia:evidence from magmatic-hydrothermal ore systems of Central Kazakhstan[J]. Tectonophysics, 328(1):69-87.
Google Scholar
|
HEKPACOB E·M·, 张民义. 1983.大型金矿床的主要构造特征(以加拿大阿比提比带为例)[J].地质调查与研究, (4):75-85.
Google Scholar
|
Helmy, H.M., Kaindl, R., Fritz, H., Loizenbauer, J., 2004. The Sukari Gold Mine, Eastern Desert-Egypt: structural setting, mineralogy and fluid inclusion study. Mineralium Deposita, 39(4): 495-511.
Google Scholar
|
Hickey K A, Ahmed A D, Barker S L L, et al. 2014. Fault-Controlled Lateral Fluid Flow Underneath and Into a Carlin-Type Gold Deposit:Isotopic and Geochemical Footprints[J]. Economic Geology, 109(5):1431-1460. doi: 10.2113/econgeo.109.5.1431
CrossRef Google Scholar
|
Hirdes W, Nunoo B. 1994. The Proterozoic paleoplacers at Tarkwa gold mine, SW Ghana:sedimentology, mineralogy, and precise age dating of the Main Reef and West Reef, and bearing of the investigations on source area aspects[J]. Geologisches Jahrbuch D, 100:247-311.
Google Scholar
|
Hitzman M W, Oreskes N, Einaudi M T. 1992. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu、U、Au、REE) deposits[J]. Precambrian Research, 58(s 1-4):241-287.
Google Scholar
|
Holley E A. 2012. The Veladero high-sulfidation epithermal Au-Ag deposit, Argentina:Volcanic stratigraphy, alteration, mineralization, and quartz paragenesis[J]. Dissertations & Theses-Gradworks, .
Google Scholar
|
IMAI A. 2001. Generation and Evolution of Ore Fluids for Porphyry Cu-Au Mineralization of the Santo Tomas Ⅱ (Philex) Deposit, Philippines[J]. Resource Geology, 51(2):71-96. doi: 10.1111/j.1751-3928.2001.tb00083.x
CrossRef Google Scholar
|
Imai, A., Ohno, S., 2008. Primary Ore Mineral Assemblage and Fluid Inclusion Study of the Batu Hijau Porphyry Cu-Au Deposit, Sumbawa, Indonesia. Resource Geology, 55(3): 239-248.
Google Scholar
|
İmer A, Richards J P, Creaser R A. 2013. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey[J]. Mineralium Deposita, 48(5):557-583. doi: 10.1007/s00126-012-0444-1
CrossRef Google Scholar
|
J.B.Whalen, R.M.Britten, I.McDougall, 等. 1985.巴布亚-新几内亚Frieda河远景区地质简介[J].地质通报, (2):125-132.
Google Scholar
|
J.V.Hamilton, Hodgson, C.J., 李上森, 1988.印度科拉尔金矿田的矿化和构造.国外前寒武纪地质.
Google Scholar
|
Jan Pasava, 李新宇. 1989.黑色页岩中的金矿床成因——IGCP254研究新成果之一[J].黄金科学技术, (08).
Google Scholar
|
Jannas R R, Beane R E, Ahler B A, et al. 1990. Gold and copper mineralization at the El Indio deposit, Chile[J]. Journal of Geochemical Exploration, 36(1-3):233-266. doi: 10.1016/0375-6742(90)90057-H
CrossRef Google Scholar
|
Jannas R R, Bowers T S, Petersen U, et al. 1999. High-sulfidation deposit types in the El Indio district, Chile[J]. Soc. Econ. Geol. Spec. Publ, 7:219-266.
Google Scholar
|
Jannas R R. 1990b. Gold and copper mineralization in the El Indio deposit, Chile, Epithermal Gold Mineralization of the Circum-Pacific:Geology, Geochemistry, Origin and Exploration Ⅱ[J]. Jour.geochem.explor, 36:233-266. doi: 10.1016/0375-6742(90)90057-H
CrossRef Google Scholar
|
John M. Guibert, Charles F.Park Jr, 天华. 1988.加拿大西北部耶洛奈夫地区金矿床[J].世界核地质科学, (4):28-33.
Google Scholar
|
Johnson J P, McCulloch M T. 1995. Sources of mineralising fluids for the Olympic Dam deposit (South Australia):Sm-Nd isotopic constraints[J]. Chemical Geology, 121(1):177-199.
Google Scholar
|
Kelley K D, Romberger S B, Beaty D W, et al. 1998. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado[J]. Economic Geology, 93(7):981-1012. doi: 10.2113/gsecongeo.93.7.981
CrossRef Google Scholar
|
Kempe, U. et al., 2015. Concordant U-Pb SHRIMP ages of U-rich zircon in granitoids from the Muruntau gold district (Uzbekistan): Timing of intrusion, alteration ages, or meaningless numbers. Ore Geology Reviews, 65: 308-326.
Google Scholar
|
Kerr D J, Gibson H L. 1993. A comparison of the Horne volcanogenic massive sulfide deposit and intracauldron deposits of the Mine Sequence, Noranda, Quebec[J]. Economic Geology, 88(6):1419-1442. doi: 10.2113/gsecongeo.88.6.1419
CrossRef Google Scholar
|
Kerrich R, Goldfarb R, Groves D, et al. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science China Earth Sciences, 43(1):1-68.
Google Scholar
|
Kerrich R, Wyman D. 1990. Geodynamic setting of mesothermal gold deposits:An association with accretionary tectonic regimes[J]. Geology, 18(9):882-885. doi: 10.1130/0091-7613(1990)018<0882:GSOMGD>2.3.CO;2
CrossRef Google Scholar
|
Kesler S E, Russell N, Seaward M, et al. 1981. Geology and geochemistry of sulfide mineralization underlying the Pueblo Viejo gold-silver oxide deposit, Dominican Republic[J]. Economic Geology, 76(5):1096-1117. doi: 10.2113/gsecongeo.76.5.1096
CrossRef Google Scholar
|
Khashgerel B E, Rye R O, Hedenquist J W, et al. 2006. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia[J]. Economic Geology, 101(3):503-522. doi: 10.2113/gsecongeo.101.3.503
CrossRef Google Scholar
|
Kishida A, Kerrich R. 1987. Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit, Kirkland Lake, Ontario[J]. Economic Geology, 82(3):649-690. doi: 10.2113/gsecongeo.82.3.649
CrossRef Google Scholar
|
Klein E L, Harris C, Giret A, et al. 2005. Geology and stable isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi Belt, northern Brazil[J]. Chemical geology, 221(3):188-206.
Google Scholar
|
Kouzmanov K, von Quadt A, Peytcheva I, et al. 2005. Rosia Poieni porphyry Cu-Au and Rosia Montana epithermal Au-Ag deposits, Apuseni Mts., Romania:Timing of magmatism and related mineralisation[J]. Bulgarian Academy of Sciences, Geochemistry, Mineralogy and Petrology, 43:113-117.
Google Scholar
|
Kouzmanov, K. et al., 2006. Magmatic Fluids in the Breccia-Hosted Epithermal Au-Ag Deposit of Rosia Montana, Romania. Economic Geology, 101(5): 923-954.
Google Scholar
|
Kuehn C A, Rose A W. 1995. Carlin gold deposits, Nevada:Origin in a deep zone of mixing between normally pressured and over-pressured fluids[J]. Economic Geology, 90(1):17-36. doi: 10.2113/gsecongeo.90.1.17
CrossRef Google Scholar
|
Kuyumjian R M. 1995. Diversity of fluids in the origin of the Chapada Cu-Au deposit, Goiás[J]. Rev. Bras. Geociências, 25(3):203-205. doi: 10.25249/0375-7536.1995203205
CrossRef Google Scholar
|
Large R R, Maslennikov V V, Robert F, et al. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia[J]. Economic Geology, 102(7):1233-1267. doi: 10.2113/gsecongeo.102.7.1233
CrossRef Google Scholar
|
Lawley C J M, Creaser R A, Jackson S E, et al. 2015. Unraveling the western Churchill province Paleoproterozoic gold metallotect:Constraints from Re-Os Arsenopyrite and U-Pb Xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted Meliadine gold district, Nunavut, Canada[J]. Economic Geology, 110(6):1425-1454. doi: 10.2113/econgeo.110.6.1425
CrossRef Google Scholar
|
Le Guen M, Lescuyer J L, Marcoux E. 1992. Lead-isotope evidence for a Hercynian origin of the Salsigne gold deposit (Southern Massif Central, France)[J]. Mineralium Deposita, 27(2):129-136. doi: 10.1007/BF00197097
CrossRef Google Scholar
|
Lesage G, Richards J P, Muehlenbachs K, et al. 2013. Geochronology, geochemistry, and fluid characterization of the late Miocene Buriticá gold deposit, Antioquia Department, Colombia[J]. Economic Geology, 108(5):1067-1097. doi: 10.2113/econgeo.108.5.1067
CrossRef Google Scholar
|
Lesage G. 2011. Geochronology, Petrography, Geochemical Constraints, and Fluid Characterization of the Buriticá Gold Deposit, Antioquia Department, Colombia[D]. University of Alberta, .
Google Scholar
|
Levitan G. 2008. Gold deposits of the CIS[M]. Xlibris Corporation, .
Google Scholar
|
Lin S, Corfu F. 2002. Structural setting and geochronology of auriferous quartz veins at the High Rock Island gold deposit, northwestern Superior Province, Manitoba, Canada[J]. Economic Geology, 97(1):43-57. doi: 10.2113/gsecongeo.97.1.43
CrossRef Google Scholar
|
Lobato L M, Santos J O S, Mcnaughton N J, et al. 2007. U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil[J]. Ore Geology Reviews, 32(3):674-680.
Google Scholar
|
Lobato L M, Vieira F W R, Ribeiro-Rodrigues L C, et al. 1998. Styles of hydrothermal alteration and gold mineralizations associated with the Nova Lima Group of the Quadrilátero Ferrífero:Part I, description of selected gold deposits[J]. Revista Brasileira de Geociências, 28(3):339-354. doi: 10.25249/0375-7536.1998339354
CrossRef Google Scholar
|
Longo A A, Dilles J H, Grunder A L, et al. 2010. Evolution of calc-alkaline volcanism and associated hydrothermal gold deposits at Yanacocha, Peru[J]. Economic Geology, 105(7):1191-1241. doi: 10.2113/econgeo.105.7.1191
CrossRef Google Scholar
|
Lubben J D, Cline J S, Barker S. 2012. Ore Fluid Properties and Sources from Quartz-Associated Gold at the Betze-Post Carlin-Type Gold Deposit, Nevada, United States[J]. Economic Geology, 107(7):1351-1385. doi: 10.2113/econgeo.107.7.1351
CrossRef Google Scholar
|
Luis Oviedo, 黄俊杰. 1993.智利亚特卡玛拉库页巴贵金属矿床的地质特征[J].国外火山地质, (2).
Google Scholar
|
MacLean W H, Hoy L D. 1991. Geochemistry of hydrothermally altered rocks at the Horne mine, Noranda, Quebec[J]. Economic Geology, 86(3):506-528. doi: 10.2113/gsecongeo.86.3.506
CrossRef Google Scholar
|
Mair J L, Farmer G L, Groves D I, et al. 2011. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada:Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems[J]. Economic Geology, 106(3):451-480. doi: 10.2113/econgeo.106.3.451
CrossRef Google Scholar
|
Mair J L, Goldfarb R J, Johnson C A, et al. 2006. Geochemical constraints on the genesis of the Scheelite Dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada[J]. Economic Geology, 101(3):523-553. doi: 10.2113/gsecongeo.101.3.523
CrossRef Google Scholar
|
Mancano D P, Campbell A R. 1995. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu Au deposit[J]. Geochimica et Cosmochimica Acta, 59(19):3909-3916. doi: 10.1016/0016-7037(95)00282-5
CrossRef Google Scholar
|
Manske S L, Hedenquist J W, O'Connor G, et al. 2006. Rosia Montana, Romania:Europe's largest gold deposit[J]. Soc Eco Geo Newsletter, 64(1):9-15.
Google Scholar
|
Mao J, Konopelko D, Seltmann R, et al. 2004. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan[J]. Economic Geology, 99(8):1771-1780. doi: 10.2113/gsecongeo.99.8.1771
CrossRef Google Scholar
|
Marinov D. Re-Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú[C]//Biennial Meeting, Sga 2011 Antofagasta, Chile. 2011.
Google Scholar
|
Martín-Izard A, Rodríguez-Terente L. 2009. Invisible gold at the Salave Deposit, NW Spain[C]//Tenth Biennial Sga Meeting, Townsville, . "smart Science for Exploration and Mining" P. J. Williams Et Al. 2009.
Google Scholar
|
Masurel Q, Thébaud N, Miller J, et al. 2017. Sadiola Hill:A world-class carbonate-hosted gold deposit in Mali, West Africa[J]. Economic Geology, 112(1):23-47. doi: 10.2113/econgeo.112.1.23
CrossRef Google Scholar
|
Mathur R, Ruiz J, Titley S, et al. 2000. Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu-Au porphyry deposit[J]. Earth and Planetary Science Letters, 183(1):7-14.
Google Scholar
|
Maughan D T, Keith J D, Christiansen E H, et al. 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA[J]. Mineralium Deposita, 37(1):14-37. doi: 10.1007/s00126-001-0228-5
CrossRef Google Scholar
|
Meffre S, Large R R, Scott R, et al. 2008. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia[J]. Geochimica et Cosmochimica Acta, 72(9):2377-2391. doi: 10.1016/j.gca.2008.03.005
CrossRef Google Scholar
|
Meldrum S J, Aquino R S, Gonzales R I, et al. 1994. The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia[J]. Journal of Geochemical Exploration, 50(1-3):203-220. doi: 10.1016/0375-6742(94)90025-6
CrossRef Google Scholar
|
Middleton C, Buenavista A, Rohrlach B, 2004. A geological review of the Tampakancopper-gold deposit, southern Mindanao, Philippines, in PACRIM 2004, AusIMM, Adelaide, Australia, September.173-187
Google Scholar
|
Minter W E L, Feather C E, Glatthaar C W. 1988. Sedimentological and mineralogical aspects of the newly discovered Witwatersrand placer deposit that reflect Proterozoic weathering, Welkom gold field, South Africa[J]. Economic Geology, 83(3):481-491. doi: 10.2113/gsecongeo.83.3.481
CrossRef Google Scholar
|
Mishra B, Panigrahi M K. 1999. Fluid evolution in the Kolar Gold Field:evidence from fluid inclusion studies[J]. Mineralium Deposita, 34(2):173-181. doi: 10.1007/s001260050194
CrossRef Google Scholar
|
Moiseenko V G, Stepanov V A, Shergina Y P. 1999. Age of the Kirov gold deposit, Amur Region[C]//DOKLADY EARTH SCIENCES C/C OF DOKLADY-AKADEMⅡA NAUK. INTERPERIODICA PUBLISHING, 369: 1217-1219.
Google Scholar
|
Monteiro L V S, Xavier R P, de Carvalho E R, et al. 2008. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil:paragenesis and stable isotope constraints[J]. Mineralium Deposita, 43(2):129-159. doi: 10.1007/s00126-006-0121-3
CrossRef Google Scholar
|
Monteiro L V S, Xavier R P, Hitzman M W, et al. 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil[J]. Ore Geology Reviews, 34(3):317-336. doi: 10.1016/j.oregeorev.2008.01.003
CrossRef Google Scholar
|
Montgomery, A. 2012. T.. Metallogenetic controls on miocene high-sulphidation epithermal gold mineralization, alto chicama district, la libertad, northern perú, .
Google Scholar
|
Moroni M, Girardi V A, Ferrario A. 2001. The Serra Pelada Au-PGE deposit, Serra dos Carajás (Pará State, Brazil):geological and geochemical indications for a composite mineralising process[J]. Mineralium Deposita, 36(8):768-785. doi: 10.1007/s001260100201
CrossRef Google Scholar
|
Moyle A J, Doyle B J, Hoogvliet H, et al. 1990. Ladolam gold deposit, Lihir island[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 2:1793-1805.
Google Scholar
|
Muntean J L. 2000. Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile[J]. Economic Geology, 95(7):1445-1472. doi: 10.2113/gsecongeo.95.7.1445
CrossRef Google Scholar
|
Nesbitt B E, Murowchick J B, Muehlenbachs K. 1986. Dual origins of lode gold deposits in the Canadian Cordillera[J]. Geology, 14(6):506-509. doi: 10.1130/0091-7613(1986)14<506:DOOLGD>2.0.CO;2
CrossRef Google Scholar
|
Neumayr P, Walshe J, Hagemann S, et al. 2008. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia:vectors to high-grade ore bodies in Archaean gold deposits?[J]. Mineralium Deposita, 43(3):363-371.
Google Scholar
|
Osae S, Kase K, Yamamoto M. 1995. A geochemical study of the Ashanti gold deposit at Obuasi, Ghana[J]. Okayama University Earth Science Report, 2(1):81-90.
Google Scholar
|
Oviedo L, Fuster N, Tschischow N, et al. 1991. General geology of La Coipa precious metal deposit, Atacama, Chile[J]. Economic Geology & the Bulletin of the Society of Economic Geologists, (6):1287-1300.
Google Scholar
|
Oviedo L, Fuster N, Tschischow N, et al. 1991. General geology of La Coipa precious metal deposit, Atacama, Chile[J]. Economic Geology, 86(6):1287-1300. doi: 10.2113/gsecongeo.86.6.1287
CrossRef Google Scholar
|
Palacios C, Herail G, Townley B, et al. 2001. The composition of gold in the cerro casale gold-rich porphyry deposit, maricunga belt, Northern Chile[J]. Canadian Mineralogist, 39(3):907-915. doi: 10.2113/gscanmin.39.3.907
CrossRef Google Scholar
|
Palenova E E, Belogub E V, Plotinskaya O Y, et al. 2015. Chemical evolution of pyrite at the Kopylovsky and Kavkaz black shale-hosted gold deposits, Bodaybo district, Russia:Evidence from EPMA and LA-ICP-MS data[J]. Geology of Ore Deposits, 57(1):64-84. doi: 10.1134/S107570151501002X
CrossRef Google Scholar
|
Parks J, Lin S, Corkery M T, et al. 2001. Geology and geochronology of the Island Lake greenstone belt, northwestern Superior Province[J]. Report of Activities, :115-120.
Google Scholar
|
Pašava J, Vymazalová A, Košler J, et al. 2010. Platinum-group elements in ores from the Kalmakyr porphyry Cu-Au-Mo deposit, Uzbekistan:bulk geochemical and laser ablation ICP-MS data[J]. Mineralium Deposita, 45(5):411-418. doi: 10.1007/s00126-010-0286-7
CrossRef Google Scholar
|
Perelló J, Cox D, Garamjav D, et al. 2001. Oyu Tolgoi, Mongolia:Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a cretaceous chalcocite blanket[J]. Economic Geology, 96(6):1407-1428. doi: 10.2113/gsecongeo.96.6.1407
CrossRef Google Scholar
|
Phillips G N, Brown I J. 1987. Host rock and fluid control on carbonate assemblages in the Golden Mile Dolerite, Kalgoorlie gold deposit, Australia[J]. The Canadian Mineralogist, 25(2):265-273.
Google Scholar
|
Phillips G N, Groves D I, Kerrich R. 1996. Factors in the formation of the giant Kalgoorlie gold deposit[J]. Ore Geology Reviews, 10(3-6):295-317. doi: 10.1016/0169-1368(95)00028-3
CrossRef Google Scholar
|
Phillips G N. 1986. Geology and alteration in the Golden Mile, Kalgoorlie[J]. Economic Geology, 81(4):779-808. doi: 10.2113/gsecongeo.81.4.779
CrossRef Google Scholar
|
Pigois J P, Groves D I, Fletcher I R, et al. 2003. Age constraints on Tarkwaian palaeoplacer and lode-gold formation in the Tarkwa-Damang district, SW Ghana[J]. Mineralium Deposita, 38(6):695-714. doi: 10.1007/s00126-003-0360-5
CrossRef Google Scholar
|
Plim, 刘洪涛. 1990.巴布亚新几内亚Lihir(利海尔)岛金矿床地质和地球化学[J].国外地质:北京, (5):29-31.
Google Scholar
|
Plimer I R, Andrew A S, Jenkins R, et al. The geology and geochemistry of the Lihir deposit, Papua New Guinea[C]//Bicent. Gold'88 Conf., Geol. Soc. Aust., Abstr. 1988, 22: 139-143.
Google Scholar
|
Pollard P J, Taylor R G, Peters L. 2005. Ages of intrusion, alteration, and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia[J]. Economic Geology, 100(5):1005-1020. doi: 10.2113/gsecongeo.100.5.1005
CrossRef Google Scholar
|
Pollard P J. 2006. An intrusion-related origin for Cu-Au mineralizationin iron oxide-copper-gold (IOCG) provinces[J]. Mineralium Deposita, 41:179-187. doi: 10.1007/s00126-006-0054-x
CrossRef Google Scholar
|
Pomies C, Cocherie A, Guerrot C, et al. 1998. Assessment of the precision and accuracy of lead-isotope ratios measured by TIMS for geochemical applications:example of massive sulphide deposits (Rio Tinto, Spain)[J]. Chemical Geology, 144(1):137-149.
Google Scholar
|
Proffett J M. 2003. Geology of the Bajo de la Alumbrera Porphyry Copper-Gold Deposit, Argentina[J]. Economic Geology, 98(8):1535-1574. doi: 10.2113/gsecongeo.98.8.1535
CrossRef Google Scholar
|
R. J. McH. Clark, R. Bonnar, 毛伦锦. 1990.安大略Larder湖附近Cheminis矿床中与太古界层控硫化物有关的金矿化[J].世界核地质科学, (3):19-24.
Google Scholar
|
Radtke A S, Rye R O, Dickson F W. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada[J]. Economic Geology, 75(5):641-672. doi: 10.2113/gsecongeo.75.5.641
CrossRef Google Scholar
|
Radtke A S. 1985. Geology of the Carlin gold deposit, Nevada[R]. USGPO,, .
Google Scholar
|
Rainbow A, Clark A H, Kyser T K, et al. 2005. The Pierina epithermal Au-Ag deposit, Ancash, Peru:paragenetic relationships, alunite textures, and stable-isotope geochemistry[J]. Chemical geology, 215(1):235-252.
Google Scholar
|
Redmond P B, Einaudi M T, Inan E E, et al. 2004. Copper deposition by fluid cooling in intrusion-centered systems:New insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 32(3):217-220. doi: 10.1130/G19986.1
CrossRef Google Scholar
|
Reed L E. 1981. The airborne electromagnetic discovery of the Detour zinc-copper-silver deposit, northwestern Quebec[J]. Geophysics, 46(9):1278-1290. doi: 10.1190/1.1441266
CrossRef Google Scholar
|
Reeve J S, Cross K C, Smith R N, et al. 1990. Olympic Dam copper-uranium-gold-silver deposit[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 2:1009-1035.
Google Scholar
|
Reich M, Parada M A, Palacios C, et al. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications[J]. Mineralium Deposita, 38(7):876-885. doi: 10.1007/s00126-003-0369-9
CrossRef Google Scholar
|
Richards J P, Kerrich R. 1993. The Porgera gold mine, Papua New Guinea; magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit[J]. Economic Geology, 88(5):1017-1052. doi: 10.2113/gsecongeo.88.5.1017
CrossRef Google Scholar
|
Richards, J.P., Wilkinson, D., Ullrich, T..2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101(8): 1455-1496.
Google Scholar
|
Richardson S V, Kesler S E, Essene E J, et al. 1986. Origin and geochemistry of the Chapada Cu-Au deposit, Goias, Brazil; a metamorphosed wall-rock porphyry copper deposit[J]. Economic Geology, 81(8):1884-1898. doi: 10.2113/gsecongeo.81.8.1884
CrossRef Google Scholar
|
Robi, 周文斌. 1990.新西兰Hauraki金矿田Thames-Tapu地区的矿化, 流体包裹体.[J].华东地质学院学报, (3):12-15.
Google Scholar
|
Rodionov S M, Fredericksen R S, Berdnikov N V, et al. 2014. The Kuranakh epithermal gold deposit (Aldan Shield, East Russia)[J]. Ore Geology Reviews, 59(4):55-65.
Google Scholar
|
Rodionov S M, Fredericksen R S, Berdnikov N V. 2005. The Kuranakh epithermal gold deposit, East Russia[C]//Mineral Deposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, : 1053-1056.
Google Scholar
|
Rosenbaum G, Giles D, Saxon M, et al. 2005. Subduction of the Nazca Ridge and the Inca Plateau:Insights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters, 239(1):18-32.
Google Scholar
|
Rota J C, Ekburg C E. 1988. History and geology outlined for Newmont's Gold Quarry deposit in Nevada[J]. Mining Eng, 40(4):239.
Google Scholar
|
Rota J C. The Gold Quarry Mine: history and general geology[C]//Bulk mineable precious metal deposits of the western United States symposium proceedings. 1987: 49-56.
Google Scholar
|
Ruggieri G, Lattanzi P, Luxoro S S, et al. 1997. Geology, mineralogy, and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy[J]. Economic Geology, 92(1):1-19.
Google Scholar
|
Rush P M, Seegers H J. 1990. Ok Tedi copper-gold deposits[J]. Geology of the mineral deposits of Australia and Papua New Guinea, 2:1747-1754.
Google Scholar
|
Ryan P J. 1996. The Candelaria copper-gold deposit, Chile[M]. University of the Witwatersrand, Economic Geology Research Unit, .
Google Scholar
|
Ryan P, Lawrence A, Jenkins R, et al. 1994. The Candelaria copper-gold deposit, Chile:Congreso Geológico Chileno, 7th[J]. Concepción Actas, 2:1616-1617.
Google Scholar
|
Rye D M, Rye R O. 1974. Homestake gold mine, South Dakota; I, Stable isotope studies[J]. Economic Geology, 69(3):293-317. doi: 10.2113/gsecongeo.69.3.293
CrossRef Google Scholar
|
Safonov Y G, Genkin A D, Vasudev V N, et al. 1984. Genetic features of gold ore deposit at Kolar, Dharwar Craton, India[J]. Journal of the Geological Society of India, 25(3):145-154.
Google Scholar
|
Sánchez, 2006, p. 30; ProInversión-Private Investment Promotion Agency in Peru, 2007
Google Scholar
|
Sander M V, Einaudi M T. 1990. Epithermal deposition of gold during transition from propylitic to potassic alteration at Round Mountain, Nevada[J]. Economic Geology, 85(2):285-311. doi: 10.2113/gsecongeo.85.2.285
CrossRef Google Scholar
|
Sanematsu K, Duncan R, Imai A, et al. 2005. Geochronological Constraints Using 40 Ar/39 Ar Dating on the Mineralization of the Hishikari Epithermal Gold Deposit, Japan[J]. Resource Geology, 55(3):249-266. doi: 10.1111/j.1751-3928.2005.tb00246.x
CrossRef Google Scholar
|
Sanematsu K. 2011. Caspiche porphyry Au-Cu deposit in the Maricunga belt, northern Chile[J].資源地質, 61:VⅡ-VⅢ.
Google Scholar
|
Savage K S, Tingle T N, O'Day P A, et al. 2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California[J]. Applied Geochemistry, 15(8):1219-1244. doi: 10.1016/S0883-2927(99)00115-8
CrossRef Google Scholar
|
Sazonov A M, Ananyev A A, Poleva T V, et al. 2010. Gold-ore metallogeny of the Yenisey Ridge:geological-structural province, structural types of ore fields[J]. Journal of Siberian Federal University. Engineering & Technologies, 4(3):371-395.
Google Scholar
|
Sazonov A M, Gertner I F, Zvyagina E A, et al. Ore-forming Сonditions of the Blagodat Gold Deposit in the Riphean Metamorphic Rocks of the Yenisey Ridge According to Geochemical and Isotopic Data[J]. 2009.
Google Scholar
|
Schaubs P M, Zhao C. 2002. Numerical models of gold-deposit formation in the Bendigo-Ballarat Zone, Victoria[J]. Australian Journal of Earth Sciences, 49(6):1077-1096. doi: 10.1046/j.1440-0952.2002.00964.x
CrossRef Google Scholar
|
Schwartz M O, Oberthür T, Amanor J, et al. 1992. Fluid inclusion re-equilibration and PTX constraints on fluid evolution in the Ashanti gold deposit, Ghana[J]. European Journal of Mineralogy, 4(5):1017-1033. doi: 10.1127/ejm/4/5/1017
CrossRef Google Scholar
|
Seedorff, E., Dilles, J. H., Proffett, J. M, Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A. and Barton, M. D. Porphyry Deposits: Characteristics and Origin of Hypogene Features. Economic Geology. 100th Anniversary Volume. 2005, 251-298.
Google Scholar
|
Sexton M A. 1994. Geophysical characteristics of the Telfer gold deposits, Western Australia[J]. Exploration Geophysics, 25(3):165-165.
Google Scholar
|
SHAVER S A. THE SIERRA GORDA PORPHYRY CU-MO (AU) DEPOSIT, REGION Ⅱ, NORTHERN CHILE, PART 2: INTRUSIVE RELATIONS AND 40AR/39AR AND RE-OS MOLYBDENITE GEOCHRONOLOGY OF THE CATALINA AND 281-ZONE MINERALIZATION CENTERS[C]//2009 Portland GSA Annual Meeting. 2009.
Google Scholar
|
Shaver S A. THE SIERRA GORDA PORPHYRY CU-MO(AU) DEPOSIT, REGION Ⅱ, NORTHERN CHILE, PART 1: ALTERATION, MINERALIZATION, AND FLUID INCLUSIONS[J]. 2009.
Google Scholar
|
Shinohara H, Hedenquist J W. 1997. Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit, Philippines[J]. Journal of Petrology, 38(12):1741-1752. doi: 10.1093/petroj/38.12.1741
CrossRef Google Scholar
|
Significant deposit s of gold, silver, copper, lead, and zinc in the United States.2000. Economic Geology, 95 (3): 618-644.
Google Scholar
|
Sillitoe R H, Tolman J, Kerkvoort G V. 2013. Geology of the Caspiche Porphyry Gold-Copper Deposit, Maricunga Belt, Northern Chile[J]. Economic Geology, 108(4):585-604. doi: 10.2113/econgeo.108.4.585
CrossRef Google Scholar
|
Sillitoe R H. 1973. Geology of the Los Pelambres Porphyry Copper Deposit, Chile[J]. Economic Geology, 68(1):1-10.
Google Scholar
|
Sillitoe R H. 2003. Iron oxide-copper-gold deposits:an Andean view[J]. Mineralium Deposita, 38(7):787-812. doi: 10.1007/s00126-003-0379-7
CrossRef Google Scholar
|
Simmons A T, Tosdal R M, Wooden J L, et al. 2013. Punctuated Magmatism Associated with Porphyry Cu-Mo Formation in the Paleocene to Eocene of Southern Peru[J]. Economic Geology, 108(4):625-639. doi: 10.2113/econgeo.108.4.625
CrossRef Google Scholar
|
Simms P, Grabinsky M, Zhan G. 2007. Modelling evaporation of paste tailings from the Bulyanhulu mine[J]. Canadian Geotechnical Journal, 44(12):1417-1432. doi: 10.1139/T07-067
CrossRef Google Scholar
|
Simpson M P, Mauk J L. 2011. Hydrothermal Alteration and Veins at the Epithermal Au-Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand[J]. Economic Geology, 106(6):945-973. doi: 10.2113/econgeo.106.6.945
CrossRef Google Scholar
|
Stefánsson A, Seward T M, Heinrich C A, et al. 2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J]. Geology, 32(9):761-764. doi: 10.1130/G20629.1
CrossRef Google Scholar
|
Stein M, Hofmann A W. 1994. Mantle plumes and episodic crustal growth[J]. Nature, 372(6501):63-68. doi: 10.1038/372063a0
CrossRef Google Scholar
|
Stepanov V A, Mel'nikov A V, Vakh A S. The Amur Gold Ore Province[J]. 2008.
Google Scholar
|
Stephen G.Peters, Gregory C.Ferdock, Maria B.Woitsekhow skaya, 等. 2000.美国内华达Goldstrike矿区卡林型贝茨金矿同变形的富矿分带(续)[J].地质找矿论丛, 15(2):115-132.
Google Scholar
|
Sugaki A, Kojima S, Shimada N. 1988. Fluid inclusion studies of the polymetallic hydrothermal ore deposits in bolivia[J]. Mineralium Deposita, 23(1):9-15.
Google Scholar
|
Surhone L M, Tennoe M T, Henssonow S F, et al. 2010. Paddington Gold Mine[M]. Betascript Publishing, .
Google Scholar
|
Tarkian M, Koopmann G. 1995. Platinum-group minerals in the Santo Tomas Ⅱ (Philex) porphyry copper-gold deposit, Luzon Island, Philippines[J]. Mineralium Deposita, 30(1):39-47.
Google Scholar
|
Taube A. 1986. The Mount Morgan gold-copper mine and environment, Queensland; a volcanogenic massive sulfide deposit associated with penecontemporaneous faulting[J]. Economic Geology, 81(6):1322-1340. doi: 10.2113/gsecongeo.81.6.1322
CrossRef Google Scholar
|
Teal L, Benavides A. 2011. History and Geologic Overview of the Yanacocha Mining District, Cajamarca, Peru[J]. Economic Geology, 105(7):1173-1190.)
Google Scholar
|
Theriault J, Frostiak J, Welch D. Surface disposal of paste tailings at the Bulyanhulu gold mine, Tanzania[C]//Proceedings of Sudbury. 2003: 265-269.
Google Scholar
|
Thompson T B, Trippel A D, Dwelley P C. 1985. Mineralized veins and breccias of the Cripple Creek district, Colorado[J]. Economic Geology, 80(6):1669-1688. doi: 10.2113/gsecongeo.80.6.1669
CrossRef Google Scholar
|
Thournout F V, Salemink J, Valenzuela G, et al. 1996. Portovelo:a volcanic-hosted epithermal vein-system in Ecuador, South America[J]. Mineralium Deposita, 31(4):269-276. doi: 10.1007/BF02280791
CrossRef Google Scholar
|
Tihor L A, Crockett J H. 1977. Gold distribution in the Kirkland Lake-Larder Lake area, with emphasis on Kerr Addison-type ore deposits-a progress report[J]. Geological Survey of Canada Paper, :363-369.
Google Scholar
|
Tohma Yuki, Imai Akira, Sanematsu Kenzo, et al. 2010. Characteristics and Mineralization Age of the Fukusen No. 1 Vein, Hishikari Epithermal Gold Deposits, Southern Kyushu, Japan[J]. Resource Geology, 60(4):348-358. doi: 10.1111/j.1751-3928.2010.00140.x
CrossRef Google Scholar
|
Tomkins A G, Pattison D R M, Zaleski E. 2004. The Hemlo gold deposit, Ontario:an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation[J]. Economic Geology, 99(6):1063-1084. doi: 10.2113/gsecongeo.99.6.1063
CrossRef Google Scholar
|
U.S. Geological Survey, 2016, Mineral commodity summaries 2016: U.S. Geological Survey, 202 p., http://dx.doi.org/10.3133/70140094.
Google Scholar
|
Ulrich T, Golding S D, Kamber B S, et al. 2003. Different mineralization styles in a volcanic-hosted ore deposit:the fluid and isotopic signatures of the Mt Morgan Au-Cu deposit, Australia[J]. Ore Geology Reviews, 22(1):61-90.
Google Scholar
|
Usmanovich M Z, Alisherovich K A. 2015. Endogenic Cracking of Rocks at Kolchiktau Gold Deposit in Daugiztau Ore Field[J].地学前缘, (S1):243-243.
Google Scholar
|
Utter T. 1980. Rounding of ore particles from the Witwatersrand gold and uranium deposit (South Africa) as an indicator of their detrital origin[J]. Journal of Sedimentary Research, 50(1).
Google Scholar
|
Van Dongen M, Weinberg R F, Tomkins A G, et al. 2010. Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid formation of the Ok Tedi porphyry Cu-Au deposit, Papua New Guinea[J]. Lithos, 114(3):282-292.
Google Scholar
|
Van Dongen M, Weinberg R F, Tomkins A G. 2013. Grade distribution of the giant Ok Tedi Cu-Au deposit, Papau New Guinea[J]. Economic Geology, 108(7):1773-1781. doi: 10.2113/econgeo.108.7.1773
CrossRef Google Scholar
|
Vennemann T W, Muntean J L, Kesler S E, et al. 1993. Stable isotope evidence for magmatic fluids in the Pueblo Viejo epithermal acid sulfate Au-Ag deposit, Dominican Republic[J]. Economic Geology, 88(1):55-71. doi: 10.2113/gsecongeo.88.1.55
CrossRef Google Scholar
|
Vial D S, Dewitt E, Lobato L M, et al. 2007. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil[J]. Ore Geology Reviews, 32(32):511-542.
Google Scholar
|
Vila T, Sillitoe R H. 1991. Gold-rich porphyry systems in the Maricunga Belt, northern Chile[J]. Economic Geology, 86(6):1238-1260. doi: 10.2113/gsecongeo.86.6.1238
CrossRef Google Scholar
|
Voland V B. 1982. The geochemistry of metasomatism tin deposits of the Potosi Type, Bolivia[J]. Chem. Erde, 41:18-32.
Google Scholar
|
Vry V, Wilkinson J, Seguel J, et al. 2010. Multistage Intrusion, Brecciation, and Veining at El Teniente, Chile:Evolution of a Nested Porphyry System[J]. Economic Geology, 105(1):119-153. doi: 10.2113/gsecongeo.105.1.119
CrossRef Google Scholar
|
W, L.J., Berger, B.R., Kurbanov, N.K..1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geology Reviews, 11(4): 175-196.
Google Scholar
|
Walker R J, Bohlke J K, Mcdonough W F, et al. 2007. Effects of Mother Lode-Type Gold Mineralization on 187Os/188Os and Platinum Group Element Concentrations in Peridotite:Alleghany District, California[J]. Economic Geology, 102(6):1079-1089. doi: 10.2113/gsecongeo.102.6.1079
CrossRef Google Scholar
|
Wang X, Cheng Z, Lu Y, et al. 1997. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 58(1):63-72. doi: 10.1016/S0375-6742(96)00052-0
CrossRef Google Scholar
|
Warren I, Archibald D A, Simmons S F. 2008. GEOCHRONOLOGY OF EPITHERMAL Au-Ag MINERALIZATION, MAGMATIC-HYDROTHERMAL ALTERATION, AND SUPERGENE WEATHERING IN THE EL PENON DISTRICT, NORTHERN CHILE[J]. Economic Geology, 103(4):851-864. doi: 10.2113/gsecongeo.103.4.851
CrossRef Google Scholar
|
Warren P I. 2005. Geology, geochemistry, and genesis of the El Peñón epithermal Au-Ag deposit, northern Chile:characteristics of a bonanza-grade deposit and techniques for exploration[J]. Health Technology Assessment, 9(7):1-238, iii-iv.
Google Scholar
|
Wenrich K J, 徐润华. 1985.富铀火山岩的地球化学特征[J].国外铀矿地质, 4:006.
Google Scholar
|
Whalen J B, Britten R M, I McDougall. 1982. Geochronology and geochemistry of the Frieda River prospect area, Papua New Guinea[J]. Economic Geology, 77(3):592-616. doi: 10.2113/gsecongeo.77.3.592
CrossRef Google Scholar
|
Wilde A R, Layer P, Mernagh T, et al. 2001. The Giant Muruntau Gold Deposit:Geologic, Geochronologic, and Fluid Inclusion Constraints on Ore Genesis[J]. Science, 96(5):633-644.
Google Scholar
|
Williams D, Stanton R L, Rambaud F. 1977. The Planes-San Antonio pyritic deposit of Rio Tinto, Spain:its nature, environment and genesis[J]. Geological Society, London, Special Publications, 7(1):152-152. doi: 10.1144/GSL.SP.1977.007.01.17
CrossRef Google Scholar
|
Williams-Jones A E. 2005. 100th Anniversary Special Paper:Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits[J]. Economic Geology, 100(7):1287-1312. doi: 10.2113/gsecongeo.100.7.1287
CrossRef Google Scholar
|
Xie X, Wang X, Xu L, et al. 1999. Orientation study of strategic deep penetration geochemical methods in the central Kyzylkum desert terrain, Uzbekistan[J]. Journal of Geochemical Exploration, 66(1):135-143.
Google Scholar
|
Yakubchuk, A.2014., Stein, H., Wilde, A.. Results of pilot Re-Os dating of sulfides from the Sukhoi Log and Olympiada orogenic gold deposits, Russia. Ore Geology Reviews, 59(3): 21-28.
Google Scholar
|
Yigit O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny:implications for future mineral exploration[J]. Economic Geology, 104(1):19-51. doi: 10.2113/gsecongeo.104.1.19
CrossRef Google Scholar
|
Yigit, O.2006. Gold in Turkey-a missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2): 147-179.
Google Scholar
|
ZHAO X, XUE C. 2014. Geological Controls of Orogenic Gold Mineralization at Zarmitan, Uzbekistan Tianshan[J]. Acta Geologica Sinica (English Edition), 88(z2):143-144.
Google Scholar
|
А.М.Саэонов, 莫耀文. 1992.叶尼塞山变质地层中的硫化物-石英金矿床[J].地质调查与研究, (1):72-78.
Google Scholar
|
曾勇, 郭维民, 姚春彦, 等. 2013.巴西卡拉加斯地区氧化铁型铜-金矿床研究进展[J].地质科技情报, (5):72-78.
Google Scholar
|
陈喜峰, 彭润民, 刘家军, 等. 2010.吉尔吉斯斯坦库姆托尔超大型金矿床地质特征[J].黄金, 31(12):15-19.
Google Scholar
|
戴自希, 王家枢. 2004.矿产勘查百年[MJ].北京: 地震出版社,
Google Scholar
|
丁式江. 1996.绿岩带型金矿研究的进展[J].东华理工大学学报(自然科学版), (3):231-236.
Google Scholar
|
方俊钦, 聂凤军, 徐备, 陈鹏, 童勤龙, 2013.蒙古国欧玉陶勒盖斑岩型铜(金)矿田的找矿新进展.地质科技情报(5).
Google Scholar
|
方维萱, 李建旭. 2012.智利铁氧化物铜金矿床分布规律、控制因素与成矿演化[C]//中国地质学会科技情报专业委员会学术研讨会.
Google Scholar
|
方维萱, 柳玉龙, 张守林, 等. 2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报:自然科学版, 39(3):404-413.
Google Scholar
|
冯蕾. 2010.可行性研究报告称DetourLake金矿有可能成为加拿大的第二大金矿[J].中国贵金属, (6):50-50.
Google Scholar
|
高乾兰. 1991.智利低温热液金矿床的成矿特征及类型[J].黄金科学技术, (7):20-21.
Google Scholar
|
韩桂春, P.怀特韦. 1994.多姆金矿的新局面——新扩建计划为古老的多姆金矿带来光辉前景[J].矿业工程, (1):36-38.
Google Scholar
|
贾润幸, 方维萱, 隗合明, 等. 2013.加拿大安大略省地质矿产资源概况[J].矿产勘查, 4(5):565-571.
Google Scholar
|
江思宏, 聂凤军, 刘翼飞. 2008.西藏马攸木金矿床的矿床类型讨论.矿床地质, 27(2): 220-229.
Google Scholar
|
金铜标. 2011.菲律宾远东南铜金矿床地质统计学资源估算[J].有色金属(矿山部分), (2):57-63.
Google Scholar
|
李上森. 1991.印度科拉尔太古宙片岩带金矿床的地质背景、矿物学、地球化学及其成因[J].地质调查与研究, (2):72-81.
Google Scholar
|
李尚林, 罗彦军, 马中平, 等. 2014.印度共和国主要金矿及其地质特征[C]//中国地球科学联合学术年会.
Google Scholar
|
李延祥. 2000.里奥廷托古矿[J].金属世界, 3:28-32.
Google Scholar
|
刘春涌, 王永江. 2007.初论中亚黑色岩系型金矿床的基本特征-兼论新疆黑色岩系型金矿找矿方向[J].新疆地质, 25(1):34-39.
Google Scholar
|
刘春涌. 2005a.哈萨克斯坦阿克巴凯特大型金矿床.中亚信息: 20-23.
Google Scholar
|
刘春涌. 2005b.哈萨克斯坦巴克尔奇克等大型以上规模金矿床.中亚信息(4): 20-24.
Google Scholar
|
刘春涌. 2005c.哈萨克斯坦的主要金矿床.中亚信息: 18-20.
Google Scholar
|
刘春涌. 2004.乌兹别克斯坦科奇布拉克超大型金矿床和金矿资源潜力.中亚信息, (10): 27-28.
Google Scholar
|
刘亮生, 王坚. 1994.秘鲁, 墨西哥和智利的新黄金项目[J].世界采矿快报, 10(25):18-20.
Google Scholar
|
刘伟, 宋国明, 智利矿产资源开发与投资环境, 国土资源情报, 2011, 11: 30-35.
Google Scholar
|
刘益康, 徐叶兵. 2003.蒙古Oyu Tolgoi斑岩铜金矿的勘查[J].地质与勘探, 39(1):1-4.
Google Scholar
|
罗明强. 2011.菲律宾斑岩型铜矿成矿背景[J].河南理工大学学报:自然科学版, 30(1):47-54.
Google Scholar
|
毛景文, 张作衡, 王义天, 等. 2012.国外主要矿床类型, 特点及找矿勘查[M].地质出版社, .
Google Scholar
|
毛景文. 2001.与黑色页岩系有关的矿床研究的动向.矿床地质20(4): 402-403.
Google Scholar
|
毛伦锦. 1989.西非的金资源[J].世界核地质科学, (2):1-6.
Google Scholar
|
孟广路, 王斌, 李宝强, 曹积飞, 范堡程, 2013.乌兹别克斯坦穆龙套金矿床研究进展.地质科技情报: 160-166.
Google Scholar
|
缪卫东. 1993.智利北部Marte斑岩金矿床[J].世界核地质科学, (3):99.
Google Scholar
|
聂凤军, 江思宏, 白大明, 侯万荣, 刘翼飞, 2010.蒙古国南部及邻区金属矿床类型及其时空分布特征.地球学报, 31(3): 267-288.
Google Scholar
|
齐金忠, 李莉, 郭晓东. 2000.大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征[J].矿床地质, 19(2):116-125.
Google Scholar
|
任军平, 许康康, 相振群, 等. 2015.南非维特沃特斯兰德盆地绍斯迪普金矿床地质特征、成矿模式和找矿模型[J].地质通报, 34(6):1217-1226.
Google Scholar
|
商木元, 李永明. 1997.加拿大富金火山块状硫化物矿床[J].冶金地质动态, (9):6-8.
Google Scholar
|
申萍, 潘鸿迪, Eleonora, S., 2015.中亚成矿域斑岩铜矿床基本特征.岩石学报, 31(2): 315-332.
Google Scholar
|
沈保丰. 1988.早前寒武纪花岗岩-绿岩地体中金的成矿作用[J].地质找矿论丛, (2):1-11.
Google Scholar
|
施俊法, 李友枝, 金庆花. 2006.世界矿情(亚洲卷).北京: 地质出版社, 1-514.
Google Scholar
|
施俊法, 唐金荣, 周平等. 2010.世界找矿模型与矿产勘查[M].地质出版社, .
Google Scholar
|
石原舜三, 王春宏. 1993.世界最大的金矿山-Grasberg矿床[J].冶金地质动态, (3):43-44.
Google Scholar
|
斯顿, 房俭生. 1998.阿伦布雷拉铜金矿[J].矿业工程, (6):12-14.
Google Scholar
|
宋国明, 2007.乌兹别克斯坦矿业投资的机遇与风险, 中国金属通报, 35, 32-34.
Google Scholar
|
孙希. 1998.巴布亚新几内亚波尔盖拉(Porgera)金矿床流体化学及其作用[J].世界地质, (1):26-39.
Google Scholar
|
谭克仁. 1998.苏霍依-洛格金矿床地质特征及控矿规律[J].黄金科学技术, 6(4):29-37.
Google Scholar
|
汤葵联. 1991.南非维特瓦特斯兰德盆地金成因的埋藏前吸附模式[J].国外地质科技, (7):41-44.
Google Scholar
|
王登红. 1994.多米尼加共和国PuebloViejo浅成低温热液硫酸盐Au-Ag矿床(简介)[J].地质与资源, (4):317-319.
Google Scholar
|
王洪黎, 李艳军, 徐遂勤, 等. 2009.浅成低温热液型金矿床若干问题的最新研究进展[J].黄金, 30(7):9-13.
Google Scholar
|
王佳新, 聂凤军, 张雪旎, 等. 2015.智利埃尔特尼恩特斑岩型铜-钼矿床[J].矿床地质, 34(1):200-203.
Google Scholar
|
王杰, 任军平, 何胜飞, 等.2014.南非主要金矿集区研究现状及存在问题[J].地质论评, 60(5):997-1008.
Google Scholar
|
王琳. 2001.俄罗斯的金矿床.国外铀金地质. 18(4): 217-226.
Google Scholar
|
王艳君. 1998.印度尼西亚松巴哇岛西南Batu Hijau斑岩铜-金矿例研究[J].物探化探译丛, (2):34-38.
Google Scholar
|
吴健民, 黄永平. 1998.稀矿山式铁铜矿床与奥林匹克坝式铜多金属矿床的对比研究[J].矿产与地质, (2):79-85.
Google Scholar
|
吴科锐, 聂凤军, 张晓康. 2015.欧洲最大的金矿床——罗马尼亚的罗西亚-蒙塔纳金矿床[J].矿床地质, 34(4):847-850.
Google Scholar
|
武广, 陈毓川, 陈衍景, 2010.哈萨克斯坦北东天山浅成低温热液型金矿床成矿时代及构造背景.岩石学报, 26: 3683-3695.
Google Scholar
|
信迪, 刘京, 李雷, 等. 2014.巴布亚新几内亚奥克泰迪铜金矿床成矿特征和控制因素[J].地质通报, 33(z1):299-307.
Google Scholar
|
徐年生. 2001.巴利克黄金公司在坦桑尼亚发现布里燕胡鲁(Bulyanhulu)大型金矿[J].国外黄金参考, (B12):14-17.
Google Scholar
|
许鹏秋. 1997. Salsigne金矿-法国西南部的一个世界级金矿[J].国外黄金参考, (10):26-27.
Google Scholar
|
薛春纪 et al., 2013.乌兹别克斯坦Almalyk斑岩铜矿田成矿时代及其地质意义.地学前缘, 20(2).
Google Scholar
|
薛春纪, 赵晓波, 莫宣学. 2016.中亚成矿域斑岩铜金成矿的地质环境问题[J].岩石学报, 5:001.
Google Scholar
|
杨培章. 1989.巴布亚新几内亚的金矿床[J].黄金科学技术, (2):32-34.
Google Scholar
|
姚华舟, 朱章显, 韦延光, 杨振强, 吴健辉, 2010.巽他群岛-新几内亚岛地区地质与矿产.北京: 地质出版社: 1-277.
Google Scholar
|
叶子裕. 1986.芒特摩根金铜矿床蚀变围岩的地球化学异常特征[J].桂林理工大学学报, (2):82.
Google Scholar
|
苑丽. 1997.美国西部克罗拉多Cripple Creek地区浅成低温金-碲化物矿床成因及相关之碱性火成岩[J].地质与资源, (02).
Google Scholar
|
张广纯, 杨兵, 秦秀峰, 等. 2014.马里金矿特征、成矿规律及找矿远景分析[J].矿产勘查, 5(2):389-395.
Google Scholar
|
张洪瑞, 侯增谦, 杨志明. 2010.特提斯成矿域主要金属矿床类型与成矿过程[J].矿床地质, 29(1):113-133.
Google Scholar
|
张洪瑞, 杨志明, 宋玉财. 2013.伊朗萨尔切什梅铜-钼-金矿床研究新进展.地质科技情报, (5)167-173.
Google Scholar
|
张家骥, 陈毓川. 1984.深入开展典型矿床研究努力提高地质找矿效果[J].中国地质, (5):6-9.
Google Scholar
|
张家骥. 1988.日本的最大金矿——菱刈金矿简介[J].中国地质, 1:013.
Google Scholar
|
张键元. 1989.美国宾厄姆露天铜矿考察报告[J].国外金属矿山, (10):21-28.
Google Scholar
|
张立生. 2002.科迪勒拉山系中的铜矿资源[J].矿床地质, (S1):90-93.
Google Scholar
|
张立生. 1999.涅日达宁金矿床(俄罗斯萨哈-雅库特)的矿物-地球化学特点和形成条件[J].世界核地质科学, (1):52-62.
Google Scholar
|
张立生. 1999.伊比利亚黄铁矿带火山成因块状硫化物矿床中两种类型金矿化[J].世界核地质科学, (3):230-235.
Google Scholar
|
张立新(译), 王睿(译), 王尚彦(校). 2008.沉积喷流型金矿[J].贵州地质, 25(1):74-79.
Google Scholar
|
张秋明, 2003.乌拉尔碰撞造山带地球动力学与成矿作用研究.国土资源情报(4): 41-47.
Google Scholar
|
张伟波, 聂凤军, 王立胜, 等. 2013.印度尼西亚格拉斯贝格铜金矿床研究新进展[J].地质科技情报, (5):112-117.
Google Scholar
|
张新元, 聂秀兰. 2010.蒙古国南部欧玉陶勒盖铜(金)矿田找矿勘查与成矿理论研究新进展[J].地球学报, 31(3):111-120.
Google Scholar
|
张雪旎, 聂凤军, 王佳新. 2014.希腊斯克瑞斯铜-金-铂族元素矿床[J].矿床地质, 33(5).
Google Scholar
|
张允. 1997.加纳阿散蒂带金矿化中的高CO2含量流体包裹体是新类别成矿流体吗?[J].国土资源信息化, (12):19-21.
Google Scholar
|
赵宇安, 刘海田, 张伟波, 等. 2013.奥林匹克坝铜-铀-金-银-稀土矿床最新研究[J].地质科技情报, (5):106-111
Google Scholar
|
朱奉三. 1987.北美最大的黄金产地——霍姆斯塔克金矿考察记实[J].地质科技情报, 2:000.
Google Scholar
|
朱华平, 范文玉, 王宏, 林方成. 2013.老挝色潘铜金矿床研究新进展.地质科技情报, (5): 182-187.
Google Scholar
|
朱意萍, 王天刚, 姚仲友, 等.2014.潘古纳斑岩型铜金矿床的地质和矿化特征, 年中国地球科学联合学术年会——专题59: 境外地质矿产调查评价论文集, 2628-2630.
Google Scholar
|
佐藤兴平, 白桦. 1984.安第斯山中部智利的埃尔·印第奥金矿床[J].地质科技情报, (1):104-107.
Google Scholar
|