Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 1
Article Contents

YAN Yu, HAN Nai-xu, LU Shui-miao, XIA Xiao-feng, LIN Li, ZHANG Xiu-li. Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153-159. doi: 10.15898/j.cnki.11-2131/td.202107200080
Citation: YAN Yu, HAN Nai-xu, LU Shui-miao, XIA Xiao-feng, LIN Li, ZHANG Xiu-li. Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153-159. doi: 10.15898/j.cnki.11-2131/td.202107200080

Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution

More Information
  • BACKGROUND

    The determination of impurity elements in hydrometallurgical zinc sulfate solution is helpful to optimize the composition of electrolytes, reduce energy consumption, and accurately feed and improve the purity of smelting metal. Impurity elements in the wet zinc smelting process are usually determined by manual sampling. The sample needs to be diluted before the equipment analysis is performed due to high content of zinc and sulfuric acid, which is difficult to achieve automatic analysis.

    OBJECTIVES

    In order to determine the online analysis of impurity elements in the solution of zinc smelting process and meet the current requirements of the hydrometallurgical industry.

    METHODS

    An automatic industrial on-line filtration/dilution combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was used. By optimizing key parameters and selecting appropriate analysis lines, a method for the rapid determination of copper, cadmium, cobalt and iron in zinc smelting solution was developed.

    RESULTS

    The experimental results showed that the linear relationship of each element was good, the correlation coefficient was greater than 0.9998, the relative standard deviation was 0.72%-1.39% (n=6), and the spiked recovery was 95%-110%.

    CONCLUSIONS

    The factory on-line automatic analysis system can replace traditional manual sampling to achieve automatic analysis. The results of on-line analysis are compared with those of manual sampling in actual production, showing good consistency. This method can be used to fully achieve automatic analysis, simple operation, accurate and reliable results, and is suitable for the analysis of impurity elements in zinc smelting.

  • 加载中
  • [1] Jia L P, Huang J J, Ma Z L, et al. Research and development trends of hydrometallurgy: An overview based on hydrometallurgy literature from 1975 to 2019[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3147-3160. doi: 10.1016/S1003-6326(20)65450-4

    CrossRef Google Scholar

    [2] Craddock P T. The origins and inspirations of zinc smelting[J]. Journal of Materials Science, 2009, 44(9): 2181-2191. doi: 10.1007/s10853-008-2942-1

    CrossRef Google Scholar

    [3] Shayesteh K, Abbasi P, Fard V V, et al. Simultaneous removal of nickel and cadmium during the cold purification of zinc sulfate solution[J]. Arabian Journal for Science and Engineering, 2020, 45(2): 587-598. doi: 10.1007/s13369-019-04320-9

    CrossRef Google Scholar

    [4] 付光, 刘俊场, 曲洪涛, 等. 硫酸锌溶液净化除杂研究现状及趋势[J]. 云南冶金, 2020(2): 33-37.

    Google Scholar

    Fu G, Liu J C, Qu H T, et al. Research status and tendency on purification and impurity removal of zinc sulfate solution[J]. Yunnan Metallurgy, 2020(2): 33-37.

    Google Scholar

    [5] Duan N, Jiang L H, Xu F Y, et al. A non-contact original-state online real-time monitoring method for complex liquids in industrial processes[J]. Engineering, 2018, 4(3): 392-397. doi: 10.1016/j.eng.2018.05.005

    CrossRef Google Scholar

    [6] Song S L, Sun W, Wang L, et al. Recovery of cobalt and zinc from the leaching solution of zinc smelting slag[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102777. doi: 10.1016/j.jece.2018.11.022

    CrossRef Google Scholar

    [7] 李坦平, 吴宜, 曾利群, 等. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素[J]. 岩矿测试, 2020, 39(5): 682-689.

    Google Scholar

    Li T P, Wu Y, Zeng L Q, et al. Determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue by inductively coupled plasma-tandem mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689.

    Google Scholar

    [8] 杨丽菊, 卢佐菊, 匡菊美. 提高硫酸锌溶液一段净化脱杂率实践[J]. 云南冶金, 2020, 49(3): 59-63.

    Google Scholar

    Yang L J, Lu Z J, Kuang J M. Practice on increasing of the purification and impurities removal rate in the first section of zinc sulfate solution[J]. Yunnan Metallurgy, 2020, 49(3): 59-63.

    Google Scholar

    [9] Lin Y J, Wei S H, Huang C Y. Intelligent manufacturing control systems: The core of smart factory[J]. Procedia Manufacturing, 2019, 39: 389-397. doi: 10.1016/j.promfg.2020.01.382

    CrossRef Google Scholar

    [10] Huang K K, Wu Y M, Long C, et al. Adaptive process monitoring via online dictionary learning and its industrial application[J]. ISA Transactions, 2021, 114: 399-412. doi: 10.1016/j.isatra.2020.12.046

    CrossRef Google Scholar

    [11] 黄康利, 袁齐, 林滨钰. 电感耦合等离子体质谱法测定硫酸锌产品中6种痕量元素[J]. 山东化工, 2018, 47(13): 73-74.

    Google Scholar

    Huang K L, Yuan Q, Lin B Y. Determination of six trace elements in zinc sulfate products by inductively coupled plasma mass spectrometry[J]. Shandong Chemical Industry, 2018, 47(13): 73-74.

    Google Scholar

    [12] Guo Y G, Zhao H, Han Y L, et al. Simultaneous spectro-photometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 532-536. doi: 10.1016/j.saa.2016.10.003

    CrossRef Google Scholar

    [13] Butcher D J. Recent highlights in graphite furnace atomic absorption spectrometry[J]. Applied Spectroscopy Reviews, 2017, 52(9): 755-773. doi: 10.1080/05704928.2017.1303504

    CrossRef Google Scholar

    [14] Zou Z R, Deng Y J, Hu J, et al. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation—A review[J]. Analytica Chimica Acta, 2018, 1019: 25-37. doi: 10.1016/j.aca.2018.01.061

    CrossRef Google Scholar

    [15] Zhou F B, Li C G, Yang C H, et al. A spectro-photometric method for simultaneous determination of trace ions of copper, cobalt, and nickel in the zinc sulfate solution by ultraviolet-visible spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117370. doi: 10.1016/j.saa.2019.117370

    CrossRef Google Scholar

    [16] 齐妍洁, 张旭, 沈庆峰, 等. 亚硝基R盐分光光度法测定硫酸锌溶液中的钴[J]. 矿冶, 2014, 23(4): 97-100.

    Google Scholar

    Qi Y J, Zhang X, Shen Q F, et al. Determination of cobalt in zinc sulfate solution with nitroso-R-salt spectrophotometry[J]. Mining and Metallurgy, 2014, 23(4): 97-100.

    Google Scholar

    [17] Novaes C G, Bezerra M A, da Silva E G P, et al. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Microchemical Journal, 2016, 128: 331-346. doi: 10.1016/j.microc.2016.05.015

    CrossRef Google Scholar

    [18] Donati G L, Amais R S, Williams C B. Recent advances in inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(7): 1283-1296. doi: 10.1039/C7JA00103G

    CrossRef Google Scholar

    [19] Wilschefski S C, Baxter M R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects[J]. The Clinical Biochemist Reviews, 2019, 40(3): 115. doi: 10.33176/AACB-19-00024

    CrossRef Google Scholar

    [20] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348.

    Google Scholar

    Gong C, Ding Y, Lu H Y, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 40(3): 340-348.

    Google Scholar

    [21] Velitchkova N S, Velichkov S V, Karadjov M G, et al. Optimization of the operating conditions in inductively coupled plasma optical emission spectrometry[J]. Bulgarian Chemical Communications, 2017, 49: 152-159.

    Google Scholar

    [22] 贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242.

    Google Scholar

    He P H, Yang Z, Gong Z X. Simultaneous determination of trace arsenic, copper, lead, zinc, nickel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242.

    Google Scholar

    [23] Trevelin A M, Marotto R E S, de Castro E V R, et al. Extraction induced by emulsion breaking for determination of Ba, Ca, Mg and Na in crude oil by inductively coupled plasma optical emission spectrometry[J]. Microchemical Journal, 2016, 124: 338-343. doi: 10.1016/j.microc.2015.09.014

    CrossRef Google Scholar

    [24] 严子心, 曲景奎, 余志辉, 等. 多谱线拟合-电感耦合等离子体原子发射光谱法测定高纯镍中痕量钴[J]. 分析化学, 2019, 47(3): 423-428.

    Google Scholar

    Yan Z X, Qu J K, Yu Z H, et al. Multi-spectral fitting-determination of trace cobalt in high purity nickel by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 423-428.

    Google Scholar

    [25] 胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388-395.

    Google Scholar

    Hu J P, Wang R Z, Du B H, et al. Determination of silver, copper, lead and zinc in sulfide ores by flame atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395.

    Google Scholar

    [26] Bachari A H, Jalali F, Alahyarizadeh G. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy[J]. Radiochimica Acta, 2017, 105(2): 95-108. doi: 10.1515/ract-2016-2639

    CrossRef Google Scholar

    [27] 赵君威, 梅坛, 鄢国强, 等. 电感耦合等离子体原子发射光谱分析中的光谱干扰及其校正的研究进展[J]. 理化检验(化学分册), 2013, 49(3): 364-369.

    Google Scholar

    Zhang J W, Mei T, Yan G Q, et al. Recent progress of researches on spectral interference and its correction in ICP-AES analysis[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(3): 364-369.

    Google Scholar

    [28] 龚琦. 对电感耦合等离子体发射光谱法中一些问题的认识[J]. 冶金分析, 2018, 38(9): 26-30.

    Google Scholar

    Gong Q. Understanding of some issues about inductively coupled plasma optical emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 26-30.

    Google Scholar

    [29] Sengupta A, Rajeswari B, Kadam R M, et al. Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry[J]. Atomic Spectroscopy, 2011, 32(5): 200-205. doi: 10.46770/AS.2011.05.005

    CrossRef Google Scholar

    [30] 成勇, 刘力维, 袁金红, 等. 电感耦合等离子体原子发射光谱法测定熔盐废渣中钪和钛[J]. 冶金分析, 2021, 41(7): 75-81.

    Google Scholar

    Cheng Y, Liu L W, Yuan J H, et al. Determination of scandium and titanium in molten salt slag by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 75-81.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(4)

Article Metrics

Article views(2387) PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint