Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 1
Article Contents

DUAN Wen, SHI Youchang. A Review of Research Progress on Analysis and Testing Technology of Fluorine in Soil and Rock Minerals[J]. Rock and Mineral Analysis, 2023, 42(1): 72-88. doi: 10.15898/j.cnki.11-2131/td.202204150079
Citation: DUAN Wen, SHI Youchang. A Review of Research Progress on Analysis and Testing Technology of Fluorine in Soil and Rock Minerals[J]. Rock and Mineral Analysis, 2023, 42(1): 72-88. doi: 10.15898/j.cnki.11-2131/td.202204150079

A Review of Research Progress on Analysis and Testing Technology of Fluorine in Soil and Rock Minerals

More Information
  • Fluoride is one of the important trace elements of human life and health. A proper amount of fluoride is beneficial to health. Excessive intake of fluoride will lead to dental fluorosis, bone fluorosis and urolithiasis, and serious excessive intake will affect the human central nervous system, endocrine hormone levels and reproductive system. The same lack of fluorine can also cause dental caries, Kaschin-beck disease signs and osteoporosis symptoms and cause hematopoietic dysfunction. Due to the chemical characteristics of fluorine, the forms of fluorine in the natural environment are very complex, and the transformation between different forms needs further study. How to quickly and accurately determine the content of fluorine in soil, rocks and minerals is of great significance for evaluating regional geochemical behavior and preventing fluorine-related diseases in humans.

    In this paper, the research progress of fluorine analysis and testing technology in soil, rocks and minerals in recent years is described. The methods, reagents and processes of sample pretreatment are summarized. The matrix correction, interference control, performance and application status of different testing methods are reviewed. In order to ensure the accuracy and reliability of the test results, it is necessary to eliminate the interference of metal cation, matrix effect and particle size validity, select the appropriate pretreatment and detection technology, reduce the detection limit, and constantly improve the accuracy and precision of the test.

    At present, the commonly used pretreatment methods mainly include pressed powder pellet, fusion, steam distillation, high temperature combustion hydrolysis, alkali fusion and acid dissolution. Among them, the pressed powder pellet method is simple, employs nondestructive analysis, has high sample preparation efficiency, and can meet the requirements of pretreatment of fluorine in large quantities of soil. The fusion method can effectively reduce the particle size effect and mineral effect, but different matrix samples need to use different oxidants, the preparation process is complicated, and requires high experience of the sample maker. Steam distillation and high temperature combustion hydrolysis are mainly used in rock sample treatment. The interference of metal ions can be effectively reduced by steam distillation or high temperature combustion hydrolysis. The test results of the samples treated by the alkali fusion method are stable and widely used, but there is metal ion interference, which leads to low fluorine test results. The acid dissolution method is used mainly for the decomposition of some specific ore samples, such as phosphate ore, and is rarely used at present.

    The commonly used determination methods include the ion selective electrode method, ion chromatography, XRF method, spectrophotometry, colorimetric method and liquid chromatography. Among them, the ion selective electrode method is mature and widely used because of its high accuracy and good stability. The detection limit of ion chromatography is low, but the test efficiency is low. X-ray fluorescence spectrometry uses lossless injection, simple environmental protection and can measure multiple elements at the same time. The colorimetric method is not accurate enough, the stability of the method is poor, the analysis steps are more complicated, and it is not suitable for the analysis of daily samples. Liquid chromatography is rarely used at present because of the expensive pretreatment equipment.

    At present, the alkali fusion method (accounting for 26%) is widely used as the most important pretreatment means, but it has many shortcomings, such as large reagent consumption, long process, complicated steps and cationic interference. Further research and practice are needed to optimize testing techniques and methods. The high temperature combustion hydrolysis method (accounting for 13%) and steam distillation method (accounting for 18%) can reduce cationic interference, but their cumbersome steps and special expensive equipment are currently used less. The ion selective electrode method accounted for more than one third of the test methods. Currently, the pre-treatment method using alkali fusion-ion selective electrode method is one of the most effective test technologies for the determination of fluorine content in soil, rocks and minerals.

    Pressed powder pellet method (accounting for 17%) has potential research value because of its unique non-destructive injection, simple, fast and environmental protection, and the matching XRF method (accounting for 29%) can realize multi-element combined measurement, which has significant advantages in stability and precision. The future research direction of fluorine determination by X-ray fluorescence spectrometry will be how to reduce the detection limit of the method and eliminate the particle size effect and mineral effect. Other analysis and testing techniques are not recommended because of cumbersome procedures, expensive pre-treatment equipment, only certain types of samples can be processed, and limitations of testing methods.

    As fluorine is a light element and its occurrence forms are complex and diverse, it is necessary to select appropriate analysis and testing techniques according to the characteristics of sample types.The main research directions of fluorine analysis and testing technology in soil, rocks and minerals and pretreatment methods are focused on non-destructive analysis of samples, safety and environmental protection, rapid and other aspects, and the main research directions of testing technology are focused on the establishment of multi-element simultaneous determination. In conclusion, the determination of fluorine in soil, rocks and minerals by pressed powder pellet-X-ray fluorescence spectrometry has important research value.

  • 加载中
  • [1] 吴卫红, 谢正苗, 徐建明, 等. 不同土壤中氟赋存形态特征及其影响研究[J]. 环境科学, 2002, 23(2): 104-108.

    Google Scholar

    Wu W H, Xie Z M, Xu J M, et al. Characteristics of forms of fluorine in soils and influential factors[J]. Environmental Science, 2002, 23(2): 104-108.

    Google Scholar

    [2] 崔俊学, 刘丽. 土壤中氟的形态与危害[J]. 广州化工, 2009, 37(9): 16-17, 28. doi: 10.3969/j.issn.1001-9677.2009.09.007

    CrossRef Google Scholar

    Cui J X, Liu L. The form and harm of fluorine in the soil[J]. Guangzhou Chemical Industry, 2009, 37(9): 16-17, 28. doi: 10.3969/j.issn.1001-9677.2009.09.007

    CrossRef Google Scholar

    [3] 袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20. doi: 10.13287/j.1001-9332.201901.003

    CrossRef Google Scholar

    Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminated soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20. doi: 10.13287/j.1001-9332.201901.003

    CrossRef Google Scholar

    [4] 涂成龙, 何令令, 崔丽峰, 等. 氟的环境地球化学行为及其对生态环境的影响[J]. 应用生态学报, 2019, 30(1): 21-29. doi: 10.13287/j.1001-9332.201901.004

    CrossRef Google Scholar

    Tu C L, He L L, Cui L F, et al. Environmental and geochemical behaviors of fluorine and its impacts on ecological environment[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 21-29. doi: 10.13287/j.1001-9332.201901.004

    CrossRef Google Scholar

    [5] 张小磊, 何宽, 马建华. 氟元素对人体健康的影响[J]. 微量元素与健康研究, 2006, 23(6): 66-67.

    Google Scholar

    Zhang X L, He K, Ma J H. Influence of fluorine on human health[J]. Studies of Trace Elements and Health, 2006, 23(6): 66-67.

    Google Scholar

    [6] 郑冬梅, 孙丽娜, 杨晓波, 等. 辽河流域高氟地区氟对人体健康的影响[J]. 生态环境学报, 2010, 19(3): 580-583. doi: 10.3969/j.issn.1674-5906.2010.03.015

    CrossRef Google Scholar

    Zheng D M, Sun L N, Yang X B, et al. Fluorine contents its health risks assessment in Liaohe River Basin[J]. Ecology and Environmental Sciences, 2010, 19(3): 580-583. doi: 10.3969/j.issn.1674-5906.2010.03.015

    CrossRef Google Scholar

    [7] Mikkonen H G, van de Graaff R, Mikkonen A T, et al. Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil[J]. Environmental Pollution, 2018, 242: 1838-1849. doi: 10.1016/j.envpol.2018.07.083

    CrossRef Google Scholar

    [8] 魏秋实, 孙清, 高科理. X荧光熔片法在混合铜精矿多元素快速分析中的应用[J]. 中国高新科技, 2019, 44(8): 54-56.

    Google Scholar

    Wei Q S, Sun Q, Gao K L. Application of X-ray fluorescence melting sheet method in rapid analysis of multiple elements in mixed copper concentrate[J]. China High and New Technology, 2019, 44(8): 54-56.

    Google Scholar

    [9] 周航, 杨斐, 史烨弘. 高温水解-离子色谱法同时测定再生锌原料中氟和氯[J]. 中国无机分析化学, 2016, (6): 74-77.

    Google Scholar

    Zhou H, Yang F, Shi Y H. Simultaneous determination of fluoride and chloride in regenerated zinc material by high temperature hydrolysis-ion chromatography[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, (6): 74-77.

    Google Scholar

    [10] 袁丁. 碱熔-氟离子选择电极测定土壤及水系沉积物中的氟[D]. 长春: 吉林大学, 2013.

    Google Scholar

    Yuan D. Analysis of soil and river sediment fluorine alkali fusion fluoride ion-selective electrode[D]. Changchun: Jilin University, 2013.

    Google Scholar

    [11] 陈益山, 刘善江. 土壤中氟离子检测方法的研究进展[J]. 安徽农业科学, 2013, 41(25): 10288-10289. doi: 10.13989/j.cnki.0517-6611.2013.25.039

    CrossRef Google Scholar

    Chen Y S, Liu S J. Research advance of detection method of fluorion in soil[J]. Journal of Anhui Agricultural Sciences, 2013, 41(25): 10288-10289. doi: 10.13989/j.cnki.0517-6611.2013.25.039

    CrossRef Google Scholar

    [12] 李小莉, 何成飞, 高文键, 等. 波长色散X射线荧光光谱法测定津巴布韦化探样品中多组分[J]. 冶金分析, 2016, 36(3): 17-22. doi: 10.13228/j.boyuan.issn1000-7571.009657

    CrossRef Google Scholar

    Li X L, He C F, Gao W J, et al. Determination of multi-components in geochemical exploration samples from Zimbabwe by wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 17-22. doi: 10.13228/j.boyuan.issn1000-7571.009657

    CrossRef Google Scholar

    [13] 王祎亚, 詹秀春, 樊兴涛, 等. 粉末压片-X射线荧光光谱法测定地质样品中痕量硫的矿物效应佐证实验及其应用[J]. 冶金分析, 2010, 30(1): 7-11. doi: 10.3969/j.issn.1000-7571.2010.01.002

    CrossRef Google Scholar

    Wang Y Y, Zhan X C, Fan X T, et al. Experimental evidence of mineralogical effects on the determination of trace sulfur in geological samples by X-ray fluorescence spectrometry with pressed powder pellet sample preparation and its application[J]. Metallurgical Analysis, 2010, 30(1): 7-11. doi: 10.3969/j.issn.1000-7571.2010.01.002

    CrossRef Google Scholar

    [14] 阿丽莉, 张盼盼, 贺攀红, 等. X射线荧光光谱法测定地质样品中的硫和氟[J]. 中国无机分析化学, 2019, 9(2): 50-53. doi: 10.3969/j.issn.2095-1035.2019.02.011

    CrossRef Google Scholar

    A L L, Zhang P P, He P H, et al. Determination of sulphur and fluorine in geological samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 50-53. doi: 10.3969/j.issn.2095-1035.2019.02.011

    CrossRef Google Scholar

    [15] 肖德明, 武朝晖. 地质样品中砷、镓、钴、镍、溴、氯、硫和氟的X射线荧光光谱法测定[J]. 铀矿地质, 1990, 16(5): 312-317.

    Google Scholar

    Xiao D M, Wu C H. Determination of As, Ga, Co, Ni, Br, Cl, S and F in geological samples by X-ray fluorescence spectrometry[J]. Uranium Geology, 1990, 16(5): 312-317.

    Google Scholar

    [16] 张兵兵, 张锦涛, 吕胜男, 等. 波长色散-X射线荧光光谱法测定地质样品中卤族元素[J]. 广东化工, 2022, 49(1): 164-166.

    Google Scholar

    Zhang B B, Zhang J T, Lyu S N, et al. Determination of halogen elements in geological samples by wavelength dispersive X-ray fluorescence spectrometry[J]. Guangdong Chemical Industry, 2022, 49(1): 164-166.

    Google Scholar

    [17] 张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11): 51-57. doi: 10.3969/j.issn.1000-0720.2008.11.014

    CrossRef Google Scholar

    Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major, minor and trace elements in soil and stream sediment samples[J]. Chinese Journal of Analysis Laboratory, 2008, 27(11): 51-57. doi: 10.3969/j.issn.1000-0720.2008.11.014

    CrossRef Google Scholar

    [18] 李小莉, 李庆霞, 安树清, 等. X射线荧光光谱法测定土壤样品中的氟[J]. 分析化学, 2019, 47(11): 1864-1869. doi: 10.19756/j.issn.0253-3820.181796

    CrossRef Google Scholar

    Li X L, Li Q X, An S Q, et al. Determination of fluorine in soil sample by X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11): 1864-1869. doi: 10.19756/j.issn.0253-3820.181796

    CrossRef Google Scholar

    [19] 赵文志, 张填昊, 卢兵, 等. 粉末压片制样-波长色散X射线荧光光谱法测定土壤和水系沉积物中溴氯氟磷硫[J]. 冶金分析, 2021, 41(4): 27-33. doi: 10.13228/j.boyuan.issn1000-7571.011171

    CrossRef Google Scholar

    Zhao W Z, Zhang T H, Lu B, et al. Determination of bromine, fluorine, phosphorus and sulfur in soil and stream sediment by wavelength dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2021, 41(4): 27-33. doi: 10.13228/j.boyuan.issn1000-7571.011171

    CrossRef Google Scholar

    [20] 唐梦奇, 刘顺琼, 袁焕明, 等. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟[J]. 岩矿测试, 2013, 32(2): 254-257. doi: 10.15898/j.cnki.11-2131/td.2013.02.012

    CrossRef Google Scholar

    Tang M Q, Liu S Q, Yuan H M, et al. Determination of fluorine in import copper ores by wavelength dispersive X-ray fluorescence spectrometry with pressed powder preparation[J]. Rock and Mineral Analysis, 2013, 32(2): 254-257. doi: 10.15898/j.cnki.11-2131/td.2013.02.012

    CrossRef Google Scholar

    [21] 王毅民, 贺中央. 磷矿石中主要和次要组分的X射线荧光光谱分析[J]. 分析化学, 1989, 17(1): 87-90.

    Google Scholar

    Wang Y M, He Z Y. Determination of multi-elements in phosphate ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 1989, 17(1): 87-90.

    Google Scholar

    [22] 李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843. doi: 10.15898/j.cnki.11-2131/td.2014.06.013

    CrossRef Google Scholar

    Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843. doi: 10.15898/j.cnki.11-2131/td.2014.06.013

    CrossRef Google Scholar

    [23] 曾江萍, 李小莉, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J]. 岩矿测试, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

    CrossRef Google Scholar

    Zeng J P, Li X L, Zhang N, et al. Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

    CrossRef Google Scholar

    [24] 曾江萍, 张莉娟, 李小莉, 等. 超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J]. 冶金分析, 2015, 35(7): 37-43.

    Google Scholar

    Zeng J P, Zhang L J, Li X L, et al. Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Metallurgical Analysis, 2015, 35(7): 37-43.

    Google Scholar

    [25] 袁建, 夏晨光, 刘高辉, 等. X射线荧光光谱法测定高氟地质样品中氟、钙等元素[J]. 铀矿地质, 2016, 32(3): 175-179.

    Google Scholar

    Yuan J, Xia C G, Liu G H, et al. Determination of F, Ca and other major elements in high fluoride concentration samples by X-ray fluorescence spectrometry[J]. Uranium Geology, 2016, 32(3): 175-179.

    Google Scholar

    [26] 李红叶, 许海娥, 李小莉, 等. 熔融制片-X射线荧光光谱法测定磷矿石中主次量组分[J]. 岩矿测试, 2009, 28(4): 379-381. doi: 10.3969/j.issn.0254-5357.2009.04.017

    CrossRef Google Scholar

    Li H Y, Xu H E, Li X L, et al. Determination of major and minor components in phosphate ores by X-ray fluorescence[J]. Rock and Mineral Analysis, 2009, 28(4): 379-381. doi: 10.3969/j.issn.0254-5357.2009.04.017

    CrossRef Google Scholar

    [27] 石友昌, 李国会, 李志雄, 等. 熔融制样-X射线荧光光谱法测定磷矿石中主次组分[J]. 冶金分析, 2017, 37(10): 53-58.

    Google Scholar

    Shi Y C, Li G H, Li Z X, et al. Determination of major and minor components in phosphate ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2017, 37(10): 53-58.

    Google Scholar

    [28] 李可及, 易建春, 潘钢. X射线荧光光谱法测定磷矿石中11种主次组分[J]. 冶金分析, 2013, 33(9): 22-27.

    Google Scholar

    Li K J, Yi J C, Pan G. Determination of eleven and minor components in phosphate ores by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2013, 33(9): 22-27.

    Google Scholar

    [29] 王祎亚, 许俊玉, 詹秀春, 等. 较低稀释比熔片制样X射线荧光光谱法测定磷矿石中12种主次痕量组分[J]. 岩矿测试, 2013, 32(1): 58-63.

    Google Scholar

    Wang YY, Xu J Y, Zhan X C, et al. Determination of twelve major, minor and trace components in phosphate ores by X-ray fluorescence spectrometry with a lower-dilution ratio of fused bead sample preparation[J]. Rock and Mineral Analysis, 2013, 32(1): 58-63.

    Google Scholar

    [30] 吴超超, 马秀艳, 邢文清, 等. 熔融制样-X射线荧光光谱法测定萤石中主次组分[J]. 冶金分析, 2017, 37(4): 42-47.

    Google Scholar

    Wu C C, Ma X Y, Xing W Q, et al. Determination of major and minor components in fluorite by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2017, 37(4): 42-47.

    Google Scholar

    [31] 陆晓明, 吉昂, 陶光仪. X射线荧光光谱法测定萤石中的氟、钙及二氧化硅[J]. 分析化学, 1997, 25(2): 178-180.

    Google Scholar

    Lu X M, Ji A, Tao G Y. Determination of fluorine, calcium and silicon dioxide in fluorite by X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 1997, 25(2): 178-180.

    Google Scholar

    [32] 倪力军, 张芳芳, 栾绍嵘. 高温裂解-离子色谱技术的研究进展[J]. 色谱, 2018, 36(3): 209-215.

    Google Scholar

    Ni L J, Zhang F F, Luan S R. Research progress of pyrolysis combined with ion chromatography[J]. Chinese Journal of Chromatography, 2018, 36(3): 209-215.

    Google Scholar

    [33] 朱和平. 水蒸气蒸馏-离子色谱法测定岩石中的氟和氯[J]. 矿产与地质, 1999, 13(5): 317-319.

    Google Scholar

    Zhu H P. Determination by steam distillation and ion chromatography fluorine and chlorine in rocks[J]. Mineral Resources and Geology, 1999, 13(5): 317-319.

    Google Scholar

    [34] 王克娟, 蒋仁依. 水蒸汽蒸馏-离子色谱法测定氟和氯[J]. 冶金分析, 2001, 21(1): 62-64.

    Google Scholar

    Wang K J, Jiang R Y. Ion chromatographic determination of fluorine and chlorine by water vapor distillation[J]. Metallurgical Analysis, 2001, 21(1): 62-64.

    Google Scholar

    [35] 周玉文, 赵生国. 铜精矿中氟离子测定方法的研究[J]. 甘肃科技, 2010, 26(21): 47-48.

    Google Scholar

    Zhou Y W, Zhao S G. Research on determination method of fluoride ion in copper concentrate[J]. Gansu Science and Technology, 2010, 26(21): 47-48.

    Google Scholar

    [36] 崔海容, 陈建华, 谢建峰, 等. 水蒸气蒸馏/离子色谱法测定磷矿石中氟化物和氯化物[J]. 分析测试学报, 2005, 24(6): 92-95.

    Google Scholar

    Cui H R, Chen J H, Xie J F, et al. Simultaneous determination of fluoride and chloride in phosphorus rock by steam distillation-ion chromatography[J]. Journal of Instrumental Analysis, 2005, 24(6): 92-95.

    Google Scholar

    [37] 钟坚海, 陈金凤, 林亚妹, 等. 水蒸气蒸馏-离子色谱法测定铁矿石中氟和氯含量不确定度评估[J]. 检验检疫学刊, 2016, 26(1): 25-28.

    Google Scholar

    Zhong J H, Chen J F, Lin Y M, et al. Evaluation of uncertainty in determination of fluoride and chloride in iron ores by steam distillation-ion chromatography[J]. Journal of Inspection and Quarantine, 2016, 26(1): 25-28.

    Google Scholar

    [38] 胡德新, 侯书建, 孟凯, 等. 水蒸气蒸馏-离子色谱法测定锰矿石中氟和氯[J]. 冶金分析, 2012, 32(9): 64-67.

    Google Scholar

    Hu D X, Hou S J, Meng K, et al. Determination of fluorine and chlorine in manganese ore by steam distillation-ion chromatography[J]. Metallurgical Analysis, 2012, 32(9): 64-67.

    Google Scholar

    [39] 张鸟飞, 穆卫华, 郑程, 等. 碱熔-水蒸气蒸馏-离子色谱法测定铅精矿中的氟和氯[J]. 现代矿业, 2019, 35(10): 127-129, 145.

    Google Scholar

    Zhang N F, Mu W H, Zheng C, et al. Detection of fluoride and chloride in lead concentrate by alkali melt-water vapor distillation-ion chromatography method[J]. Modern Mining, 2019, 35(10): 127-129, 145.

    Google Scholar

    [40] 刘玮, 刘春峰. 碱熔-水蒸气蒸馏-离子色谱法测定锌精矿中的氟[J]. 中国无机分析化学, 2014, 4(2): 14-17.

    Google Scholar

    Liu W, Liu C F. Determination of fluoride in zinc concentrate by alkali melt-water vapor distillation-ion chromatography[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(2): 14-17.

    Google Scholar

    [41] 刘晓芳. 高温燃烧水解-离子选择电极法测定土壤中氟[J]. 资源节约与环保, 2018(7): 39-40.

    Google Scholar

    Liu X F. Determination of fluoride in soil by high temperature combustion hydrolysis and ion selective electrode method[J]. Resources Economization and Environmental Protection, 2018(7): 39-40.

    Google Scholar

    [42] 黎香荣, 赖天成. 连续再生抑制-离子色谱法测定多金属矿中的氟[C]//第21届全国色谱学术报告会及仪器展览会会议论文集, 2017.

    Google Scholar

    Li X R, Lai T C. Determination of fluoride in polymetallic ore by continuous regeneration inhibition- ion chromato-graphy[C]//Proceedings of the 21st National Chromatographic Symposium and Instrument Exhibition, 2017.

    Google Scholar

    [43] 黎香荣, 黄园, 罗明贵, 等. 高温水解和水蒸气蒸馏样品处理法在氧化锌中氟和氯含量测定的比较[J]. 云南化工, 2020, 47(2): 55-58.

    Google Scholar

    Li X R, Huang Y, Luo M G, et al. The comparison of pyrohydrolysis and steam distillation in the determination of fluoride and chloride in zinc oxide[J]. Yunnan Chemical Technology, 2020, 47(2): 55-58.

    Google Scholar

    [44] 秦立俊, 乔柱, 石慧, 等. 高温热水解-离子色谱法测定铬矿中氟含量[J]. 中国无机分析化学, 2017, 7(2): 6-9.

    Google Scholar

    Qin L J, Qiao Z, Shi H, et al. Determination of fluorine in chrome ore by ion chromatography combined with pyrohydrolysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(2): 6-9.

    Google Scholar

    [45] 洪武兴, 田琼, 叶金燕, 等. 高温燃烧水解离子色谱法测定铬矿石中氟和氯[J]. 有色金属科学与工程, 2020, 11(4): 64-68.

    Google Scholar

    Hong W X, Tian Q, Ye J Y, et al. Determination of fluorine and chlorine in chrome ore by high temperature combustion hydrolysis in ion chromatography[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 64-68.

    Google Scholar

    [46] 杨树洁, 胡建军, 杨旭明, 等. 高温水解-离子色谱法测定铁矿石中氟和氯[J]. 广州化工, 2019, 47(7): 112-114, 126.

    Google Scholar

    Yang S J, Hu J J, Yang X M, et al. Determination of fluorine and chlorine in iron ore by high temperature hydrolysis-ion chromatography[J]. Guangzhou Chemical Industry, 2019, 47(7): 112-114, 126.

    Google Scholar

    [47] 李颖娜, 徐志彬, 张志伟. 高温水解-离子色谱法测定铁矿石中氟和氯[J]. 冶金分析, 2016, 36(6): 23-28.

    Google Scholar

    Li Y N, Xu Z B, Zhang Z W. Determination of fluorine and chlorine in iron ore by pyrohydrolysis-ion chromatography[J]. Metallurgical Analysis, 2016, 36(6): 23-28.

    Google Scholar

    [48] 邓海文, 吴代赦, 陈成广, 等. 碱熔-氟离子选择性电极法测定土壤氟含量[J]. 地球与环境, 2007, 35(3): 284-287.

    Google Scholar

    Deng H W, Wu D S, Chen C G, et al. Determination of fluorides in soils by the alkaline melting-fluoride ion-selective electrode method[J]. Earth and Environment, 2007, 35(3): 284-287.

    Google Scholar

    [49] 陈桂琴, 章效强, 易永, 等. 碱熔-离子选择电极法测定土壤中氟的方法改进[J]. 中国检验检测, 2009, 17(4): 8-9.

    Google Scholar

    Chen G Q, Zhang X Q, Yi Y, et al. Improvement of the method for determination of fluoride in soil by alkali fusion-ion selective electrode[J]. China Inspection Body and Laboratory, 2009, 17(4): 8-9.

    Google Scholar

    [50] 张冬英, 周世厥. 离子选择电极法测定土壤中氟的方法改进[J]. 安徽农学通报, 2002, 8(5): 48-49, 55.

    Google Scholar

    Zhang D Y, Zhou S Q. Improvement of ion selective electrode method for determination of fluoride in soil[J]. Anhui Agricultural Science Bulletin, 2002, 8(5): 48-49, 55.

    Google Scholar

    [51] 崔嵩. 离子选择电极法测定土壤中氟含量最佳熔融条件的确定[J]. 农业科技与信息, 2012(23): 59-60.

    Google Scholar

    Cui S. Determination of optimum melting conditions for determination of fluorine content in soil by ion selective electrode method[J]. Agricultural Science-Technology and Information, 2012(23): 59-60.

    Google Scholar

    [52] 杜丽娟, 黎其万, 严红梅, 等. 离子选择电极法测定土壤中氟含量最佳因素的确定[J]. 西南农业学报, 2011, 24(4): 1400-1403.

    Google Scholar

    Du L J, Li Q W, Yan H M, et al. Determination of optimum factors on fluorine content in soil by ion selective electrode method[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1400-1403.

    Google Scholar

    [53] 段慧, 张丹, 冯丽. 离子选择电极法测定土壤中的氟化物[J]. 西南师范大学学报(自然科学版), 2012, 37(11): 73-77.

    Google Scholar

    Duan H, Zhang D, Feng L. On determination of fluoride in soil by means of ion-selective electrode[J]. Journal of Southwest China Normal University (Natural Science Edition), 2012, 37(11): 73-77.

    Google Scholar

    [54] 肖芳, 倪文山, 毛香菊, 等. 混合碱熔融-离子选择性电极法测定矿石中氟[J]. 冶金分析, 2015, 35(9): 77-82.

    Google Scholar

    Xiao F, Ni W S, Mao X J, et al. Determination of fluorine in ore by mixed alkali fusion-ion selective electrode method[J]. Metallurgical Analysis, 2015, 35(9): 77-82.

    Google Scholar

    [55] 杨倩. 高温碱熔-离子选择性电极法测定铜矿石中的氟化物[J]. 现代矿业, 2019, 35(11): 183-185.

    Google Scholar

    Yang Q. Determination of fluoride in copper ores by high temperature alkaline fusion-ion selective electrode method[J]. Modern Mining, 2019, 35(11): 183-185.

    Google Scholar

    [56] 郝淑娟. 离子选择电极法测定铁矿中氟量的方法优化[J]. 包钢科技, 2015, 41(4): 70-73.

    Google Scholar

    Hao S J. Optimization of ion selective electrode method for determining fluoride content in iron ore[J]. Science and Technology of Baotou Steel, 2015, 41(4): 70-73.

    Google Scholar

    [57] 刘在美, 曹国洲, 朱晓艳, 等. 离子选择电极法测定铜矿石中氟量的不确定度分析[J]. 有色矿冶, 2009, 25(1): 55-57.

    Google Scholar

    Liu Z M, Cao G Z, Zhu X Y, et al. Uncertainty evaluation of detection of fluorine in copper ore by ion selective electrode analysis[J]. Non-Ferrous Mining and Metallurgy, 2009, 25(1): 55-57.

    Google Scholar

    [58] 李清彩, 赵庆令, 张洪民, 等. 离子选择性电极电位法测定钼矿石和钨矿石中氟[J]. 理化检验(化学分册), 2011, 47(8): 932-934.

    Google Scholar

    Li Q C, Zhao Q L, Zhang H M, et al. Potentiometric determination of fluoride in ores of molybdenum and tungsten with fluoride ion selective electrode[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2011, 47(8): 932-934.

    Google Scholar

    [59] 李娅萍, 杨小珊. 离子选择电极法测定土壤中氟前处理的改进初探[J]. 环境科学导刊, 2012, 31(5): 114-115.

    Google Scholar

    Li Y P, Yang X S. A research on improving the pretreatment for fluoride detection in soil by ion selective electrode[J]. Environmental Science Survey, 2012, 31(5): 114-115.

    Google Scholar

    [60] 甘守志. 某些矿石中氯、氟的电极法测定[J]. 化学传感器, 1982(2): 90.

    Google Scholar

    Gan S Z. Determination of chlorine and fluorine in certain ores by electrode method[J]. Chemical Sensors, 1982(2): 90.

    Google Scholar

    [61] 杨生恕. 稀硝酸分解矿样-电极法测定磷矿石中氟[J]. 贵州大学学报(自然科学版), 1990, 7(2): 60-63.

    Google Scholar

    Yang S S. Dilute HNO3 decomposition of phosphate ore for F- determination using ion selective electrode[J]. Journal of Guizhou University (Natural Sciences), 1990, 7(2): 60-63.

    Google Scholar

    [62] 郭学文. 酸溶电极法联合测定磷矿中的碘和氟[J]. 化学传感器, 1981(3): 29-32.

    Google Scholar

    Guo X W. Determination of iodine and fluorine in phosphate rock by acid-soluble electrode method[J]. Chemical Sensors, 1981(3): 29-32.

    Google Scholar

    [63] 姜善春, 陈友明, 潘均. 氟对磷酸盐矿物形成影响的实验研究[J]. 地质科学, 1964(4): 341-352.

    Google Scholar

    Jiang S C, Chen Y M, Pan J. Experimental study on the influence of fluoride on the formation of phosphate minerals[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 1964(4): 341-352.

    Google Scholar

    [64] 吴祥. 土壤中氟化物的测定方法研究[J]. 中国西部科技, 2009, 8(35): 4-5.

    Google Scholar

    Wu X. Research on the determination of fluoride in the soil[J]. Science and Technology of West China, 2009, 8(35): 4-5.

    Google Scholar

    [65] 李秋, 路星锋, 王曦婕, 等. 全国土壤状况详查工作中水溶性氟的测定技术方法改进与讨论[J]. 天津化工, 2021, 35(4): 44-45.

    Google Scholar

    Li Q, Lu X F, Wang X J, et al. Improvement and discussion on the method for determination of water-soluble fluorine in the detailed investigation of soil conditions in China[J]. Tianjin Chemical Industry, 2021, 35(4): 44-45.

    Google Scholar

    [66] 贺毅. 离子选择电极法测定土壤中的水溶性氟化物[J]. 华北自然资源, 2020, 4(3): 88-90.

    Google Scholar

    He Y. Determination of water-soluble fluoride in soil by ion selective electrode method[J]. Huabei Natural Resources, 2020, 4(3): 88-90.

    Google Scholar

    [67] 高宏宇, 杨祥, 宋祯祯, 等. 热水解-离子选择电极法测定海相碳酸盐岩中的氟[J]. 岩矿测试, 2009, 28(2): 139-142.

    Google Scholar

    Gao H Y, Yang X, Song Z Z, et al. Determination of fluorine in marine carbonate rocks by pyrohydrolysis-ion selective electrode method[J]. Rock and Mineral Analysis, 2009, 28(2): 139-142.

    Google Scholar

    [68] 张雪莲. 离子选择电极法测定铍精矿中氟的含量[J]. 湖南有色金属, 2011, 27(2): 65-67.

    Google Scholar

    Zhang X L. Determination of fluoride in beryllium concentrate by ion selective electrode method[J]. Hunan Nonferrous Metals, 2011, 27(2): 65-67.

    Google Scholar

    [69] 古映莹, 苏莎, 杨天足, 等. 离子选择电极法测定电铅灰中氟与氯[J]. 冶金分析, 2012, 33(8): 55-58.

    Google Scholar

    Gu Y Y, Su S, Yang T Z, et al. Determination of fluoride and chloride in lead dust by ion selective electrode method[J]. Metallurgical Analysis, 2012, 33(8): 55-58.

    Google Scholar

    [70] 王虹, 魏伟, 苏明跃. 高压密封消解-氟离子选择电极-格氏作图法测定铁矿石中氟[J]. 冶金分析, 2007, 27(6): 48-50.

    Google Scholar

    Wang H, Wei W, Su M Y. Determination of fluorine in iron ore by fluorinion selective electrode and gran chart model after digestion with high pressure-air proof vessel[J]. Metallurgical Analysis, 2007, 27(6): 48-50.

    Google Scholar

    [71] 杨占菊. 碱熔融-离子选择性电极法测定氧化锌中氟方法改进[J]. 青海大学学报, 2017, 35(3): 76-81.

    Google Scholar

    Yang Z J. Improving alkali fusion-ion selective electrode method in the determination of fluorine content in zinc oxide[J]. Journal of Qinghai University, 2017, 35(3): 76-81.

    Google Scholar

    [72] 李培. 氟离子选择电极测定矿石中氟含量[J]. 化工技术与开发, 2000, 29(2): 41-42.

    Google Scholar

    Li P. Determination of fluorine in ores by fluorine ion selective electrode[J]. Technology and Development of Chemical Industry, 2000, 29(2): 41-42.

    Google Scholar

    [73] 唐建华, 孙镝, 王国庆. 土壤中氟离子测定方法初探[J]. 黑龙江环境通报, 2008, 32(3): 23-25.

    Google Scholar

    Tang J H, Sun D, Wang G Q. Determination method of fluorinion in soil[J]. Heilongjiang Environmental Journal, 2008, 32(3): 23-25.

    Google Scholar

    [74] 金芸. 自动进样/离子色谱法测定土壤样品中的氟离子[J]. 武汉科技学院学报, 2005, 18(10): 65-67.

    Google Scholar

    Jin Y. Determination of fluoride ions in soil samples by automatic injection/ion chromatography[J]. Journal of Wuhan Textile University, 2005, 18(10): 65-67.

    Google Scholar

    [75] 朱攀, 王建龙, 张攀, 等. 碱熔-离子色谱法测定土壤中氟的研究[J]. 实用预防医学, 2009, 16(5): 1608-1610.

    Google Scholar

    Zhu P, Wang J L, Zhang P, et al. Determination of fluoride in soil by alkaline fusion and ion chromatography[J]. Practical Preventive Medicine, 2009, 16(5): 1608-1610.

    Google Scholar

    [76] 阳兆鸿, 李华昌, 于力, 等. 水蒸气蒸馏-离子色谱法测定硫化矿石中氟和氯[J]. 冶金分析, 2015, 35(4): 34-38.

    Google Scholar

    Yang Z H, Li H C, Yu L, et al. Determination of fluoride and chloride in sulfide ores by steam distillation ion chromatography[J]. Metallurgical Analysis, 2015, 35(4): 34-38.

    Google Scholar

    [77] 黎香荣, 黄园, 赖天成. 高温水解-离子色谱法测定有色金属矿中氟和氯[J]. 冶金分析, 2018, 38(2): 53-58.

    Google Scholar

    Li X R, Huang Y, Lai T C. Determination of fluoride and chloride in nonferrous metal ore by pyrohydrolysis-ion chromatography[J]. Metallurgical Analysis, 2018, 38 (2): 53-58.

    Google Scholar

    [78] 姚廷伸, 帅素珍, 张万成. 土壤中氟的分光光度测定法[J]. 四川师院学报(自然科学版), 1982 (4): 181-188.

    Google Scholar

    Yao T S, Shuai S Z, Zhang W C. Spectrophotometric determination of fluorine in soil[J]. Journal of Sichuan Normal University(Natural Science), 1982(4): 181-188.

    Google Scholar

    [79] 安凌冰. 氟试剂比色法测定土壤中氟的条件选择[J]. 甘肃科技, 1996(S1): 103-104.

    Google Scholar

    An L B. Selection of conditions for the determination of fluoride in soil by fluorine reagent colorimetric method[J]. Gansu Science and Technology, 1996(S1): 103-104.

    Google Scholar

    [80] 刘春, 王丹, 常诚. 碱熔融-分光光度法测定富铌渣中氟的探讨[J]. 冶金分析, 2014, 34(4): 47-50.

    Google Scholar

    Liu C, Wang D, Chang C. Discussion on alkali fusion-spectrophotometric determination of fluorine in niobium-enriched slag[J]. Metallurgical Analysis, 2014, 34(4): 47-50.

    Google Scholar

    [81] 刘春, 郝茜, 崔爱端. 水蒸汽蒸馏-分光光度法测定钆镁合金中氟量[J]. 稀土, 2014, 35(5): 80-84.

    Google Scholar

    Liu C, Hao Q, Cui A D. Determination of fluorine content in Gd-Mg alloy by water vapor distillation-spectrophotometry chemical analysis method[J]. Chinese Rare Earths, 2014, 35(5): 80-84.

    Google Scholar

    [82] 马玉莉. 分光光度法测定高纯氧化铌(钽)中氟的研究[J]. 稀有金属和硬质合金, 2009, 37(3): 36-38, 47.

    Google Scholar

    Ma Y L. Fluorine determination in high purity niobium or tantalum oxides by spectrophotometry[J]. Rare Metals and Cemented Carbides, 2009, 37(3): 36-38, 47.

    Google Scholar

    [83] 张辅铭, 冷时杰. 微量氟的二甲苯酚橙比色测定[J]. 卫生研究, 1975(1): 14-18.

    Google Scholar

    Zhang F M, Leng S J. Colorimetric determination of trace amounts of fluorine by xylenol orange[J]. Journal of Hygiene Research, 1975(1): 14-18.

    Google Scholar

    [84] 李华斌, 徐向荣, 彭安. 高效液相色谱法测定茶叶和土壤中的氟[J]. 环境科学, 1998(3): 78-79.

    Google Scholar

    Li H B, Xu X R, Peng A. Determination of fluoride in tea and soil by high performance liquid chromatography[J]. Environmental Science, 1998(3): 78-79.

    Google Scholar

    [85] 丁朝武, 李华斌. 反相高效液相色谱法测定氟离子[J]. 分析化学, 1998, 26(3): 369.

    Google Scholar

    Ding C W, Li H B. Determination of fluoride ion by reversed phase high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 1998, 26(3): 369.

    Google Scholar

    [86] 于向华, 高晓宁, 魏玉娟. 氢氧化钠熔融-氟离子选择电极法测定土壤全氟含量的熔融条件研究[J]. 农业科技与装备, 2011(4): 28-32.

    Google Scholar

    Yu X H, Gao X N, Wei Y J. Research on the determination fusion conditions in determining soil perfluor with sodium hydroxide liquation ion selective electrode method[J]. Agricultural Science and Technology and Equipment, 2011(4): 28-32.

    Google Scholar

    [87] 郝一莼, 孙小单, 徐桐, 等. 氟离子检测分析方法研究进展[J]. 中国地方病防治杂志, 2010, 25(6): 412-415.

    Google Scholar

    Hao Y C, Sun X D, Xu T, et al. The study advance on examine method of fluorine[J]. Chinese Journal of Control of Endemic Diseases, 2010, 25(6): 412-415.

    Google Scholar

    [88] 徐昊晟, 顾强龙. 离子选择电极法测氟中的影响因素[J]. 上海计量测试, 2014, 41(6): 34-35, 47.

    Google Scholar

    Xu Hao S, Gu Q L. Discussion and research of the influence of ion selective electrode method to measure fluoride factors[J]. Shanghai Measurement and Testing, 2014, 41(6): 34-35, 47.

    Google Scholar

    [89] 郜守一, 邵传东, 张彦军, 等. 离子选择电极法测定氟离子方法的优化[J]. 化工设计通讯, 2021, 47(3): 63, 70.

    Google Scholar

    Hao S Y, Shao C D, Zhang Y J, et al. Optimization of ion-selective electrode method for determination of fluoride ion[J]. Chemical Engineering Design Communications, 2021, 47(3): 63, 70.

    Google Scholar

    [90] 鲁东霞, 王伟. 离子选择电极法测定土壤中水溶氟的研究[J]. 土壤, 1998(3): 165-166, 164.

    Google Scholar

    Lu D X, Wang W. Research on determination of water soluble fluoride in soil by ion selective electrode method[J]. Soils, 1998(3): 165-166, 164.

    Google Scholar

    [91] 李金玉, 吴梦凡, 陈魏. 基于GB中铜精矿中氟的测定方法改进[J]. 铜业工程, 2017(1): 75-77.

    Google Scholar

    Li J Y, Wu M F, Chen W. Fluorine determination method improvement of copper concentrate in GB standard[J]. Copper Engineering, 2017(1): 75-77.

    Google Scholar

    [92] Eyde B. Determination of acid soluble fluoride in soils by means of an ion-selective electrode[J]. Fresenius' Journal of Analytical Chemistry, 1983, 316(3): 299-301.

    Google Scholar

    [93] 张志伟, 刘嘉玮, 刘建军. 分光光度法与离子选择电极法测定氟化物的比较[J]. 河北水利, 2014(7): 39.

    Google Scholar

    Zhang Z W, Liu J W, Liu J J. Comparison between spectrophotometric method and ion selective electrode method for determination of fluoride[J]. Hebei Water Resources, 2014(7): 39.

    Google Scholar

    [94] 孙明山, 孙忠萍, 牛朝红, 等. 离子色谱法对生活饮用水中氟、氯、硫酸根、硝酸根阴离子的测定[J]. 农业与技术, 2007, 27(2): 89-90.

    Google Scholar

    Sun M S, Sun Z P, Niu C H, et al. Determination of fluoride, chlorine, sulfate and nitrate anions in drinking water by ion chromatography[J]. Agriculture and Technology, 2007, 27(2): 89-90.

    Google Scholar

    [95] 吴伟杰. 氟离子检测方法的改进及离子色谱法的应用[J]. 广东化工, 2005(8): 69-71.

    Google Scholar

    Wu W J. Improvement of fluoride analysis and application of ion chromatography[J]. Guangdong Chemical Industry, 2005(8): 69-71.

    Google Scholar

    [96] Kowalkiewicz Z, Urbaniak W. Determination of fluorine by total reflection X-ray fluorescence in fluoride fluxes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 164: 1-7.

    Google Scholar

    [97] An J, Lee J, Yoon H O. Strategies for overcoming limita-tions associated with fluorine determination in solid materials by conventional wavelength dispersive X-ray fluorescence spectrometry[J]. Microchemical Journal, 2015, 122: 76-81.

    Google Scholar

    [98] An J, Kim K H, Yoon H O, et al. Application of the wave-length dispersive X-ray fluorescence technique to determine soil fluorine with consideration of iron content in the matrix[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 69: 38-43.

    Google Scholar

    [99] 应晓浒, 林振兴. X射线荧光光谱法测定氟石中氟化钙和杂质的含量[J]. 光谱实验室, 2000, 17(1): 78-81.

    Google Scholar

    Ying X H, Lin Z X. Determination of CaF2 and impurity in fluorspar by X-ray fluorescence[J]. Chinese Journal of Spectroscopy Laboratory, 2000, 17(1): 78-81.

    Google Scholar

    [100] 马慧霞, 张爱芬. X射线荧光光谱法测定萤石中主、次量成分[J]. 理化检验(化学分册), 2005, 41(增刊): 92-96.

    Google Scholar

    Ma H X, Zhang A F. XRF determination of major and minor elements in fluorite[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2005, 41(Supplement): 92-96.

    Google Scholar

    [101] 张洪志, 蒋薇. X射线荧光光谱法测定萤石中CaF2、SiO2、P和S[J]. 山东冶金, 2004, 26(5): 61-63.

    Google Scholar

    Zhang H Z, Jiang W. Determination of CaF2, SiO2, P and S in fluorite by X-ray fluorescence spectrometry[J]. Shandong Metallurgy, 2004, 26(5): 61-63.

    Google Scholar

    [102] 许惠英, 金建忠. 样品中微量氟化物的测定方法[J]. 广州化学, 2004, 29(2): 62-66.

    Google Scholar

    Xu H Y, Jin J Z. Determination of trace fluoride content in samples[J]. Guangzhou Chemistry, 2004, 29(2): 62-66.

    Google Scholar

    [103] 郑秋艳, 王少波, 李绍波, 等. 氟化氢的分析方法综述[J]. 化学分析计量, 2009, 8(6): 83-85, 88.

    Google Scholar

    Zheng Q Y, Wang S B, Li S B, et al. Analytical methods of fluoride hydrogen[J]. Chemical Analysis and Meterage, 2009, 8(6): 83-85, 88.

    Google Scholar

    [104] 张玉明, 石庆. 氟试剂分光光度法测定氟化物的方法分析[J]. 水文, 2002, 22(6): 50-53.

    Google Scholar

    Zhang Y M, Shi Q. Method analysis of fluoride reagent spectrophotometric determination of fluoride[J]. Journal of China Hydrology, 2002, 22(6): 50-53.

    Google Scholar

    [105] 刘彬, 王霞. 土壤中氟离子的测定方法对比[J]. 广东化工, 2017, 44(13): 256-258.

    Google Scholar

    Liu B, Wang X. Comparison of fluorine ion determination methods in soil[J]. Guangdong Chemical Industry, 2017, 44(13): 256-258.

    Google Scholar

    [106] 易憲武. 矿石中氟的比色测定[J]. 化学世界, 1958(12): 568-569.

    Google Scholar

    Yi X W. Colorimetric determination of fluorine in ores[J]. Chemical World, 1958(12): 568-569.

    Google Scholar

    [107] 张丽伟, 王凡, 田小亭, 等. 自动测氟仪快速测定铁矿石中氟含量[J]. 广州化工, 2022, 50(8): 117-118.

    Google Scholar

    Zhang L W, Wang F, Tian X T, et al. Rapid determination of fluorine in ore by automatic fluorimeter[J]. Guangzhou Chemical Industry, 2022, 50(8): 117-118.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(6)

Article Metrics

Article views(2845) PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint