[1]
|
TANNER D,HENLEY R W,MAVROGENES J A,et al.Combining in situ isotopic,trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits[J].Contributions to Mineralogy and Petrology,2013,166(4):1119-1142.
Google Scholar
|
[2]
|
ZHAO X Y,ZHENG Y C,YANG Z S,et al.Formation and evolution of multistage ore-forming fluids in the Miocene Bangpu porphyry-skarn deposit,Southern Tibet:Insights from LA-ICP-MS trace elements of quartz and fluid inclusions[J].Journal of Asian Earth Sciences,2020,204:104556.
Google Scholar
|
[3]
|
FERET F R,ROY D.Determination of quartz in bauxite by a combined X-ray diffraction and X-ray fluorescence method[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(3):551-559.
Google Scholar
|
[4]
|
BRUSNITSYN A I,STARIKOVA E V,ZHUKOV I G.Mineralogy of low grade metamorphosed manganese sediments of the Urals:Petrological and geological applications[J].Ore Geology Reviews,2017,85:140-152.
Google Scholar
|
[5]
|
李凯,陈浩鹏,万欢,等.江西乐平涌山地区韧性剪切带对金矿化的控制及找矿远景[J].华东地质,2023,44(4):376-385.
Google Scholar
LI K,CHEN H P,WAN H,et al.Control effect of ductile shear zone on gold mineralization and its ore searching prospects in Yongshan area,Leping City,Jiangxi Province[J].East China Geology,2023,44(4):376-385.
Google Scholar
|
[6]
|
RAMAN C V,NEDUNGADI T M K.The α-β transformation of quartz[J].Nature,1940,145(3665):147-147.
Google Scholar
|
[7]
|
VAN LIER J A,BRUYN P L D,OVERBEEK J T G.The solubility of quartz[J].The Journal of Physical Chemistry,1960,64(11):1675-1682.
Google Scholar
|
[8]
|
LEVIEN L,PREWITT C T,WEIDNER D J.Structure and elastic properties of quartz at pressure[J].American Mineralogist,1980,65(9/10):920-930.
Google Scholar
|
[9]
|
FLEM B,LARSEN R B,GRIMSTVEDT A,et al.In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J].Chemical Geology,2002,182(2/4):237-247.
Google Scholar
|
[10]
|
MÜLLER A,KRONZ A,BREITER K.Trace elements and growth patterns in quartz:a fingerprint of the evolution of the subvolcanic PodlesíGranite System (Krušnéhory Mts.,Czech Republic)[J].Bulletin of the Czech Geological Survey,2002,77(2):135-145.
Google Scholar
|
[11]
|
MVLLER A,WIEDENBECK M,VAN DEN KERKHOF A M,et al.Trace elements in quartz-a combined electron microprobe,secondary ion mass spectrometry,laser-ablation ICP-MS,and cathodoluminescence study[J].European Journal of Mineralogy,2003,15(4):747-763.
Google Scholar
|
[12]
|
LARSEN R B,HENDERSON I,IHLEN P M,et al.Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway[J].Contributions to Mineralogy and Petrology,2004,147(5):615-628.
Google Scholar
|
[13]
|
DONOVAN J J,LOWERS H A,RUSK B G.Improved electron probe microanalysis of trace elements in quartz[J].American Mineralogist,2011,96(2/3):274-282.
Google Scholar
|
[14]
|
MONECKE T,KEMPE U,GÖTZE J.Genetic significance of the trace element content in metamorphic and hydrothermal quartz:a reconnaissance study[J].Earth and Planetary Science Letters,2002,202(3/4):709-724.
Google Scholar
|
[15]
|
RUSK B G,LOWERS H A,REED M H.Trace elements in hydrothermal quartz:Relationships to cathodoluminescent textures and insights into vein formation[J].Geology,2008,36(7):547-550.
Google Scholar
|
[16]
|
RUSK B.Cathodoluminescent textures and trace elements in hydrothermal quartz[M]//GÖTZE J,MÖCKEL R.Quartz:Deposits,Mineralogy and Analytics.Berlin:Springer,2012:307-329.
Google Scholar
|
[17]
|
JOURDAN A L V,MULLIS J,RAMSEYER K,et al.Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins[J].European Journal of Mineralogy,2009,21(1):219-231.
Google Scholar
|
[18]
|
LUO K,ZHOU J X,HUANG Z L,et al.New insights into the evolution of Mississippi Valley-Type hydrothermal system:A case study of the Wusihe Pb-Zn deposit,South China,using quartz in-situ trace elements and sulfides in situ S-Pb isotopes[J].American Mineralogist,2020,105(1):35-51.
Google Scholar
|
[19]
|
SCHRÖN W,SCHMÄDICKE E,THOMAS R,et al.Geochemische Untersuchungen an Pegmatitquarzen[J].Zeitschrift für geologische Wissenschaften,1988,16(3):229-244.
Google Scholar
|
[20]
|
BREITER K,ĎURIŠOVÁJ,DOSBABA M.Chemical signature of quartz from S-and A-type rare-metal granites-A summary[J].Ore Geology Reviews,2020,125:103674.
Google Scholar
|
[21]
|
ROTTIER B,CASANOVA V.Trace element composition of quartz from porphyry systems:a tracer of the mineralizing fluid evolution[J].Mineralium Deposita,2021,56(5):843-862.
Google Scholar
|
[22]
|
HOBBS B E.Recrystallization of single crystals of quartz[J].Tectonophysics,1968,6(5):353-401.
Google Scholar
|
[23]
|
SWANSON S E,FENN P M.Quartz crystallization in igneous rocks[J].American Mineralogist,1986,71(3/4):331-342.
Google Scholar
|
[24]
|
PIETRANIK A,HOLTZ F,KOEPKE J,et al.Crystallization of quartz dioritic magmas at 2 and 1 kbar:experimental results[J].Mineralogy and Petrology,2009,97(1):1-21.
Google Scholar
|
[25]
|
GRIFFITHS J H E,OWEN J,WARD I M.Paramagnetic resonance in neutron-irradiated diamond and smoky quartz[J].Nature,1954,173(4401):439-440.
Google Scholar
|
[26]
|
WEIL J A.A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz[J].Physics and Chemistry of Minerals,1984,10(4):149-165.
Google Scholar
|
[27]
|
WEIL J A.A review of the EPR spectroscopy of the point defects in α-quartz:The decade 1982-1992[M]//HELMS C R,DEAL B E.The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2.New York:Springer,1993:131-144.
Google Scholar
|
[28]
|
GÖTZE J.Chemistry,textures and physical properties of quartz——geological interpretation and technical application[J].Mineralogical Magazine,2009,73(4):645-671.
Google Scholar
|
[29]
|
WATT G R,WRIGHT P,GALLOWAY S,et al.Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts[J].Geochimica et Cosmochimica Acta,1997,61(20):4337-4348.
Google Scholar
|
[30]
|
JACAMON F,LARSEN R B.Trace element evolution of quartz in the charnockitic Kleivan granite,SW-Norway:The Ge/Ti ratio of quartz as an index of igneous differentiation[J].Lithos,2009,107(3/4):281-291.
Google Scholar
|
[31]
|
GÖTZE J,PLÖTZE M,GRAUPNER T,et al.Trace element incorporation into quartz:a combined study by ICP-MS,electron spin resonance,cathodoluminescence,capillary ion analysis,and gas chromatography[J].Geochimica et Cosmochimica Acta,2004, 68(18):3741-3759.
Google Scholar
|
[32]
|
DER CHANNER D M, BRAY C J, SPOONER E T C. Integrated cation-anion/volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples[J]. Chemical Geology, 1999, 154(1/4):59-82.
Google Scholar
|
[33]
|
PENNISTON-DORLAND S C. Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence:Grasberg Igneous Complex, Irian Jaya, Indonesia[J]. American Mineralogist, 2001, 86(5/6):652-666.
Google Scholar
|
[34]
|
WATSON E B. Surface enrichment and trace-element uptake during crystal growth[J]. Geochimica et Cosmochimica Acta, 1996, 60(24):5013-5020.
Google Scholar
|
[35]
|
LARKIN J J, ARMINGTON A F, O'CONNOR J J, et al. Growth of quartz with high aluminum concentration[J]. Journal of Crystal Growth, 1982, 60(1):136-140.
Google Scholar
|
[36]
|
IHINGER P D, ZINK S I. Determination of relative growth rates of natural quartz crystals[J]. Nature, 2000, 404(6780):865-869.
Google Scholar
|
[37]
|
CHERNIAK D J, WATSON E B, WARK D A. Ti diffusion in quartz[J]. Chemical Geology, 2007, 236(1/2):65-74.
Google Scholar
|
[38]
|
ROTTIER B, REZEAU H, CASANOVA V, et al. Trace element diffusion and incorporation in quartz during heating experiments[J]. Contributions to Mineralogy and Petrology, 2017, 172(4):23.
Google Scholar
|
[39]
|
TAILBY N D, CHERNIAK D J, WATSON E B. Al diffusion in quartz[J]. American Mineralogist, 2018, 103(6):839-847.
Google Scholar
|
[40]
|
DENNEN W H. Stoichiometric substitution in natural quartz[J]. Geochimica et Cosmochimica Acta, 1966, 30(12):1235-1241.
Google Scholar
|
[41]
|
PACÁK K, ZACHARIÁŠ J, STRNAD L. Trace-element chemistry of barren and ore-bearing quartz of selected Au, Au-Ag and Sb-Au deposits from the Bohemian Massif[J]. Journal of Geosciences, 2019, 64(1):19-35.
Google Scholar
|
[42]
|
THOMAS J B, BRUCE WATSON E, SPEAR F S, et al. TitaniQ under pressure:the effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions to Mineralogy and Petrology, 2010, 160(5):743-759.
Google Scholar
|
[43]
|
MÜLLER A, HERKLOTZ G, GIEGLING H. Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany[J]. Journal of Geochemical Exploration, 2018, 190:357-373.
Google Scholar
|
[44]
|
GAO S, ZOU X Y, HOFSTRA A H, et al. Trace elements in quartz:Insights into source and fluid evolution in magmatic-hydrothermal systems[J]. Economic Geology, 2022, 117(6):1415-1428.
Google Scholar
|
[45]
|
严薇,刘曦,孙赛军,等. 5 GPa、1 500~1 750℃条件下微量元素在柯石英与含水硅酸盐熔体之间分配行为的实验研究[J].中国科学:地球科学, 2021, 51(8):1375-1388. YAN W, LIU X, SUN S J, et al. Experimental constraints on trace element partitioning between coesite and hydrous silicate melt at 5 Gpa and 1 500~1 750℃[J]. Science China Earth Sciences, 2021, 64(7):1171-1183.
Google Scholar
|
[46]
|
PERNY B, EBERHARDT P, RAMSEYER K, et al. Microdistribution of Al, Li, and Na in α quartz:Possible causes and correlation with short-lived cathodoluminescence[J]. American Mineralogist, 1992, 77(5/6):534-544.
Google Scholar
|
[47]
|
MÜLLER A, IHLEN P M, WANVIK J E, et al. High-purity quartz mineralisation in kyanite quartzites, Norway[J]. Mineralium Deposita, 2007, 42(5):523-535.
Google Scholar
|
[48]
|
MÜLLER A, IHLEN P M, KRONZ A. Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway[J]. European Journal of Mineralogy, 2008, 20(4):447-463.
Google Scholar
|
[49]
|
MÜLLER A, WANVIK J E, IHLEN P M. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway[M]//GÜTZE J, MÖCKEL R. Quartz:Deposits, Mineralogy and Analytics. Berlin:Springer, 2012:71-118.
Google Scholar
|
[50]
|
杨晓勇,孙超,曹荆亚,等.高纯石英的研究进展及发展趋势[J].地学前缘, 2022, 29(1):231-244.
Google Scholar
YANG X Y, SUN C, CAO J Y, et al. High purity quartz:research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1):231-244.
Google Scholar
|
[51]
|
陈剑锋,张辉.石英晶格中微量元素组成对成岩成矿作用的示踪意义[J].高校地质学报, 2011, 17(1):125-135.
Google Scholar
CHEN J F, ZHANG H. Trace elements in quartz lattice and their implications for petrogenesis and mineralization[J]. Geological Journal of China Universities, 2011, 17(1):125-135.
Google Scholar
|
[52]
|
陈小丹,陈振宇,程彦博,等.热液石英中微量元素特征及应用:认识与进展[J].地质论评, 2011, 57(5):707-717.
Google Scholar
CHEN X D, CHEN Z Y, CHENG Y B, et al. Distribution and application of trace elements in hydrothermal quartz:understanding and prospecting[J]. Geological Review, 2011, 57(5):707-717.
Google Scholar
|
[53]
|
卞玉冰,邹少浩,许德如,等.石英的结构和微量元素特征研究进展及其在岩浆-热液矿床中的应用[J].大地构造与成矿学, 2023, 47(2):407-427.
Google Scholar
BIAN Y B, ZOU S H, XU D R, et al. Research progress on textural and trace element characteristics of quartz and its application in magmatic-hydrothermal deposits[J]. Geotectonica et Metallogenia, 2023, 47(2):407-427.
Google Scholar
|
[54]
|
VERNON R H. Evaluation of the "quartz-eye" hypothesis[J]. Economic Geology, 1986, 81(6):1520-1527.
Google Scholar
|
[55]
|
SIBSON R H, SCOTT J. Stress/fault controls on the containment and release of overpressured fluids:Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J]. Ore Geology Reviews, 1998, 13(1/5):293-306.
Google Scholar
|
[56]
|
DOWLING K, MORRISON G. Application of quartz textures to the classification of gold deposits using North Queensland examples[M]//KEAYS R R, RAMSAY E R H, GROVES D I. The Geology of Gold Deposits:The Perspective in 1988. Boulder:Society of Economic Geologists, 1989:342-355.
Google Scholar
|
[57]
|
WANG D Z, LIU J J, CARRANZA E J M, et al. Formation and evolution of snowball quartz phenocrysts in the Dongping porphyritic granite, Hebei Province, China:Insights from fluid inclusions, cathodoluminescence, trace elements, and crystal size distribution study[J]. Lithos, 2019, 340/341:239-254.
Google Scholar
|
[58]
|
DONG G Y, MORRISON G, JAIRETH S. Quartz textures in epithermal veins, Queensland; classification, origin and implication[J]. Economic Geology, 1995, 90(6):1841-1856.
Google Scholar
|
[59]
|
PIAZOLO S, PRIOR D J, HOLNESS M D. The use of combined cathodoluminescence and EBSD analysis:a case study investigating grain boundary migration mechanisms in quartz[J]. Journal of Microscopy, 2005, 217(2):152-161.
Google Scholar
|
[60]
|
MÖRK M B E, MOEN K. Compaction microstructures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis[J]. Journal of Structural Geology, 2007, 29(11):1843-1854.
Google Scholar
|
[61]
|
MARSHALL J D. Cathodoluminescence of geological materials by D. J. Marshall, Unwin Hyman, 1988. No. of pages:146. Price:£60. 00(Hardback). ISBN 004 5520267[J]. Geological Journal, 1991, 26(4):351.
Google Scholar
|
[62]
|
GÖTZE J. Application of cathodoluminescence microscopy and spectroscopy in geosciences[J]. Microscopy and Microanalysis, 2012, 18(6):1270-1284.
Google Scholar
|
[63]
|
GÖTZE J, PAN Y M, MÜLLER A. Mineralogy and mineral chemistry of quartz:a review[J]. Mineralogical Magazine, 2021, 85(5):639-664.
Google Scholar
|
[64]
|
EDWARDS P R, MARTIN R W, O'DONNELL K P, et al. Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers[J]. Physica Status Solidi (C), 2003(7):2474-2477.
Google Scholar
|
[65]
|
MACRAE C M, WILSON N C, JOHNSON S A, et al. Hyperspectral mapping——combining cathodoluminescence and X-ray collection in an electron microprobe[J]. Microscopy research and technique, 2005, 67(5):271-277.
Google Scholar
|
[66]
|
LANDTWING M R, PETTKE T. Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz[J]. American Mineralogist, 2005, 90(1):122-131.
Google Scholar
|
[67]
|
ZINKERNAGEL U. Cathodoluminescence of quartz and its application to sandstone petrology[J]. Contributions to Sedimentary Geology, 1978, 8:1-69.
Google Scholar
|
[68]
|
DEMARS C, PAGEL M, DELOULE E, et al. Cathodoluminescence of quartz from sandstones; interpretation of the UV range by determination of trace element distributions and fluid-inclusion P-T-X properties in authigenic quartz[J]. American Mineralogist, 1996, 81(7/8):891-901.
Google Scholar
|
[69]
|
RAMSEYER K, FISCHER J, MATTER A, et al. A cathodoluminescence microscope for low intensity luminescence[J]. Journal of Sedimentary Research, 1989, 59(4):619-622.
Google Scholar
|
[70]
|
LIU X H, XU J W, LAI J Q, et al. Genetic significance of trace elements in hydrothermal quartz from the Xiangzhong metallogenic province, South China[J]. Ore Geology Reviews, 2023, 152:105229.
Google Scholar
|
[71]
|
PATEL A B, BUNDHELIYA A R, ZALA R V, et al. A brief review on dissolution method development[J]. Asian Journal of Pharmaceutical Analysis, 2022, 12(2):127-134.
Google Scholar
|
[72]
|
LEHMANN K, BERGER A, GÖTTE T, et al. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL-and SEM-CC-imaging[J]. Mineralogical Magazine, 2009, 73(4):633-643.
Google Scholar
|
[73]
|
SINDERN S. Analysis of rare earth elements in rock and mineral samples by ICP-MS and LA-ICP-MS[J]. Physical Sciences Reviews, 2017, 2(2):20160066.
Google Scholar
|
[74]
|
TSUJI K, SPOLNIK Z, WAGATSUMA K, et al. Detection limits of grazing-exit EPMA for particle analysis[J]. Microchimica Acta, 2000, 132(2):357-360.
Google Scholar
|
[75]
|
LAHAYE N L, HARILAL S S, DIWAKAR P K, et al. The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits in fs-LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(11):1781-1787.
Google Scholar
|
[76]
|
RUSK B, KOENIG A, LOWERS H. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry[J]. American Mineralogist, 2011, 96(5/6):703-708.
Google Scholar
|
[77]
|
XIA X P, CUI Z X, LI W C, et al. Zircon water content:reference material development and simultaneous measurement of oxygen isotopes by SIMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6):1088-1097.
Google Scholar
|
[78]
|
CUI Z X, XIA X P, YANG Q, et al. SIMS zircon hydrogen isotope and H2O content analyses and reference material development[J]. Atomic Spectroscopy, 2022, 43(1):70-76.
Google Scholar
|
[79]
|
FISCHER M, RÖLLER K, KÜSTER M, et al. Open fissure mineralization at 2600 m depth in Long Valley Exploratory Well (California)-insight into the history of the hydrothermal system[J]. Journal of Volcanology and Geothermal Research, 2003, 127(3/4):347-363.
Google Scholar
|
[80]
|
MÜLLER A, HERRINGTON R, ARMSTRONG R, et al. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits[J]. Mineralium Deposita, 2010, 45(7):707-727.
Google Scholar
|
[81]
|
YANG L, TIAN Y Y, LI Q Z, et al. Texture and trace element characteristics of quartz in the Dongyuan porphyry W deposit, eastern China[J]. Solid Earth Sciences, 2023, 8(4):305-318.
Google Scholar
|
[82]
|
ZHONG F J, ZHANG X T, WANG K X, et al. Genesis of the Mianhuakeng granite-related uranium deposit, South China:Insights from cathodoluminescence imaging, fluid inclusions, and trace elements composition of hydrothermal quartz[J]. Ore Geology Reviews, 2023, 154:105308.
Google Scholar
|
[83]
|
LAN Q, LIN J R, FU S L, et al. Cathodoluminescent textures and trace element signatures of hydrothermal quartz from the granite-related No. 302 uranium deposit, South China:A reconnaissance study for their genetic significances[J]. Journal of Geochemical Exploration, 2021, 224:106740.
Google Scholar
|
[84]
|
WANG S L, PENG H J, WANG T R, et al. Trace element composition and cathodoluminescence of quartz in the Hongniu-Hongshan Skarn deposit in Yunnan Province, Southwest China[J]. Frontiers in Earth Science, 2022, 10:864118.
Google Scholar
|
[85]
|
HALLBAUER D K. The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks[C]//Geological Society of South Africa 24th Congress. Bloemfontein, 1992:157-159.
Google Scholar
|
[86]
|
GÖTZE J, PLÖTZE M. Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR)[J]. European Journal of Mineralogy, 1997, 9(3):529-538.
Google Scholar
|
[87]
|
LARSEN R B, POLVE M, JUVE G. Granite pegmatite quartz from Evje-Iveland:trace element chemistry and implications for the formation of high-purity quartz[J]. Norges Geologiske Undersokelse, 2000, 436:57-66.
Google Scholar
|
[88]
|
池国祥,赖健清.流体包裹体在矿床研究中的作用[J].矿床地质, 2009, 28(6):850-855.
Google Scholar
CHI G X, LAI J Q. Roles of fluid inclusions in study of mineral deposits[J]. Mineral Deposits, 2009, 28(6):850-855.
Google Scholar
|
[89]
|
POTTER II R W. Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O[J]. Journal of Research of the U.S. Geological Survey, 1977, 5(5):603-607.
Google Scholar
|
[90]
|
BODNAR R J. Reequilibration of fluid inclusions[M]//SAMSON I, ANDERSON A, MARSHALL D. Fluid Inclusions:Analysis and Interpretation. Blacksburg:Mineralogical Association of Canada, 2003:213-230.
Google Scholar
|
[91]
|
ZHOU Z J, CHEN Y J, JIANG S Y, et al. Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit, Xiaoqinling gold field, Qinling Orogen, China[J]. Ore Geology Reviews, 2015, 66:47-64.
Google Scholar
|
[92]
|
SU W C, HEINRICH C A, PETTKE T, et al. Sediment-hosted gold deposits in Guizhou, China:products of wall-rock sulfidation by deep crustal fluids[J]. Economic Geology, 2009, 104(1):73-93.
Google Scholar
|
[93]
|
LI J W, HU R Z, XIAO J F, et al. Genesis of gold and antimony deposits in the Youjiang metallogenic province, SW China:evidence from in situ oxygen isotopic and trace element compositions of quartz[J]. Ore Geology Reviews, 2020, 116:103257.
Google Scholar
|
[94]
|
BAKER T, LANG J R. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns:an example from the Bismark Deposit, Mexico[J]. Mineralium Deposita, 2003, 38(4):474-495.
Google Scholar
|
[95]
|
MAO W, RUSK B, YANG F C, et al. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China:insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J]. Economic Geology, 2017, 112(4):889-918.
Google Scholar
|
[96]
|
SUN M Y, MONECKE T, REYNOLDS T J, et al. Understanding the evolution of magmatic-hydrothermal systems based on microtextural relationships, fluid inclusion petrography, and quartz solubility constraints:insights into the formation of the Yulong Cu-Mo porphyry deposit, eastern Tibetan Plateau, China[J]. Mineralium Deposita, 2021, 56(5):823-842.
Google Scholar
|
[97]
|
郑方顺,宋国学.铕异常在地质学中的应用[J].岩石学报, 2023, 39(9):2832-2856.
Google Scholar
ZHENG F S, SONG G X. Application of Eu anomaly in Geology[J]. Acta Petrologica Sinica, 2023, 39(9):2832-2856.
Google Scholar
|
[98]
|
陈华勇,张莉,李登峰,等.南天山萨瓦亚尔顿金矿床稀土微量元素特征及其成因意义[J].岩石学报, 2013, 29(1):159-166.
Google Scholar
CHEN H Y, ZHANG L, LI D F, et al. Characteristics of rare earth and trace elements of the Sawayaerdun gold deposit, Southwest Tianshan:implications for ore genesis[J]. Acta Petrologica Sinica, 2013, 29(1):159-166.
Google Scholar
|
[99]
|
第鹏飞,汤庆艳,刘聪,等.西秦岭夏河-合作地区早子沟和加甘滩金矿床石英微量元素特征及意义[J].现代地质, 2021, 35(6):1608-1621.
Google Scholar
DI P F, TANG Q Y, LIU C, et al. Trace element characteristics of quartz from the Zaozigou and Jiagantan Gold deposits in the Xiahe-Hezuo district, West Qinling[J]. Geoscience, 2021, 35(6):1608-1621.
Google Scholar
|
[100]
|
WARK D A, WATSON E B. TitaniQ:a titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754.
Google Scholar
|
[101]
|
HUANG R F, AUDÉTAT A. The titanium-in-quartz (TitaniQ) thermobarometer:A critical examination and re-calibration[J]. Geochimica et Cosmochimica Acta, 2012, 84:75-89.
Google Scholar
|
[102]
|
AUDÉTAT A. Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado[J]. Journal of Petrology, 2015, 56(8):1519-1546.
Google Scholar
|
[103]
|
CODEÇO M S, WEIS P, TRUMBULL R B, et al. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal[J]. Chemical Geology, 2017, 468:1-16.
Google Scholar
|
[104]
|
SCHIRRA M, LAURENT O, ZWYER T, et al. Fluid evolution at the Batu Hijau porphyry Cu-Au deposit, Indonesia:Hypogene sulfide precipitation from a single-phase aqueous magmatic fluid during chlorite-white-mica alteration[J]. Economic Geology, 2022, 117(5):979-1012.
Google Scholar
|
[105]
|
赵晓瑜,钟宏.罗卜岭斑岩Cu-Mo矿床成矿流体演化:来自石英阴极发光及LA-ICP-MS微量元素的制约[J].矿物学报, 2022, 42(5):579-589.
Google Scholar
ZHAO X Y, ZHONG H. The evolution of ore-forming fluids of the Luoboling porphyry Cu-Mo deposit:constraints from cathode luminescence images and LA-ICP-MS trace element analyses of quartzs[J]. Acta Mineralogica Sinica, 2022, 42(5):579-589.
Google Scholar
|
[106]
|
RAMBOZ C, PICHAVANT M, WEISBROD A. Fluid immiscibility in natural processes:Use and misuse of fluid inclusion data:Ⅱ. Interpretation of fluid inclusion data in terms of immiscibility[J]. Chemical Geology, 1982, 37(1/2):29-48.
Google Scholar
|
[107]
|
CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. Carlin-type gold deposits in Nevada:Critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J D H, GOLDFARB R J, et al. Economic Geology 100th Anniversary. Littleton:Society of Economic Geologists, 2005:451-484.
Google Scholar
|
[108]
|
周云,段其发,陈毓川,等.湘西龙山江家垭铅锌矿床石英Rb-Sr同位素测年与示踪研究[J].中国地质, 2015, 42(2):597-606.
Google Scholar
ZHOU Y, DUAN Q F, CHEN Y C, et al. Rb-Sr dating and tracer study of quartz from the Jiangjiaya lead-zinc deposit in western Hunan[J]. Geology in China, 2015, 42(2):597-606.
Google Scholar
|
[109]
|
SHU Q H, CHANG Z S, MAVROGENES J. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential:an example at the Haobugao Zn-Pb skarn, China[J]. Geology, 2021, 49(4):473-477.
Google Scholar
|
[110]
|
LEHMANN K, PETTKE T, RAMSEYER K. Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman[J]. Chemical Geology, 2011, 280(1-2):47-57.
Google Scholar
|
[111]
|
YAN J, MAVROGENES J A, LIU S, et al. Fluid properties and origins of the Lannigou Carlin-type gold deposit, SW China:Evidence from SHRIMP oxygen isotopes and LA-ICP-MS trace element compositions of hydrothermal quartz[J]. Journal of Geochemical Exploration, 2020, 215:106546.
Google Scholar
|
[112]
|
ROTTIER B, KOUZMANOV K, CASANOVA V, et al. Tracking fluid mixing in epithermal deposits-insights from in-situ δ18O and trace element composition of hydrothermal quartz from the giant Cerro de Pasco polymetallic deposit, Peru[J]. Chemical Geology, 2021, 576:120277.
Google Scholar
|
[113]
|
ZIELINSKI R A. Uraniferous opal, Virgin Valley, Nevada:Conditions of formation and implications for uranium exploration[J]. Journal of Geochemical Exploration, 1982, 16(3):197-216.
Google Scholar
|
[114]
|
邱华宁,白秀娟.流体包裹体40Ar/39Ar定年技术与应用[J].地球科学, 2019, 44(3):685-697.
Google Scholar
QIU H N, BAI X J. Fluid inclusion 40Ar/39Ar dating technique and its applications[J]. Earth Science, 2019, 44(3):685-697.
Google Scholar
|
[115]
|
业渝光.电子自旋共振(ESR)测年方法简介[J].中国地质, 1992(3):28-29.
Google Scholar
YE Y G. Introduction of electron spin resonance dating[J]. Geology in China, 1992(3):28-29.
Google Scholar
|
[116]
|
RINK W J. Electron spin resonance (ESR) dating and ESR applications in Quaternary science and archaeometry[J]. Radiation Measurements, 1997, 27(5/6):975-1025.
Google Scholar
|
[117]
|
尹功明,林敏.沉积物电子自旋共振测年现状[J].核技术, 2005, 28(5):399-402.
Google Scholar
YIN G M, LIN M. Present status of ESR dating of sediments[J]. Nuclear Techniques, 2005, 28(5):399-402.
Google Scholar
|
[118]
|
杨坤光,梁兴中,谢建磊,等. ESR定年:一种确定脆性断层活动年龄的方法原理与应用[J].地球科学进展, 2006, 21(4):430-435.
Google Scholar
YANG K G, LIANG X Z, XIE J L, et al. ESR dating, the principle and application of a method to determine active ages of brittle faults[J]. Advances in Earth Science, 2006, 21(4):430-435.
Google Scholar
|
[119]
|
DUVAL M, ARNOLD L J, RIXHON G. Electron spin resonance (ESR) dating in Quaternary studies:evolution, recent advances and applications[J]. Quaternary International, 2020, 556:1-10.
Google Scholar
|
[120]
|
AMELIN Y, BACK M. Opal as a U-Pb geochronometer:search for a standard[J]. Chemical Geology, 2006, 232(1/2):67-86.
Google Scholar
|
[121]
|
NEYMARK L A, PACES J B. Consequences of slow growth for 230Th/U dating of Quaternary opals, Yucca Mountain, NV, USA[J]. Chemical Geology, 2000, 164(1/2):143-160.
Google Scholar
|
[122]
|
NEMCHIN A A, NEYMARK L A, SIMONS S L. U-Pb SHRIMP dating of uraniferous opals[J]. Chemical Geology, 2006, 227(1/2):113-132.
Google Scholar
|
[123]
|
LUDWIG K R, LINDSEY D A, ZIELINSKI R A, et al. U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah[J]. Earth and Planetary Science Letters, 1980, 46(2):221-232.
Google Scholar
|
[124]
|
NEYMARK L A, PACES J B. Ion-probe U-Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium[J]. Earth and Planetary Science Letters, 2013, 361:98-109.
Google Scholar
|
[125]
|
NURIEL P, MILLER D M, SCHMIDT K M, et al. Ten-million years of activity within the Eastern California Shear Zone from U-Pb dating of fault-zone opal[J]. Earth and Planetary Science Letters, 2019, 521:37-45.
Google Scholar
|
[126]
|
ROSSMAN G R, WEIS D, WASSERBURG G J. Rb, Sr, Nd and Sm concentrations in quartz[J]. Geochimica et Cosmochimica Acta, 1987, 51(9):2325-2329.
Google Scholar
|
[127]
|
杨屹.阿尔金大平沟金矿床成矿时代Rb-Sr定年[J].新疆地质, 2003, 21(3):303-306.
Google Scholar
YANG Y. Rb-Sr isotope age of the mineralization of Dapinggou gold deposits in Altun[J]. Xinjiang Geology, 2003, 21(3):303-306.
Google Scholar
|
[128]
|
张宇,邵拥军,全伟,等.铜陵新桥Cu-S-Fe矿床下盘石英黄铁矿脉石英流体包裹体Rb-Sr同位素定年[J].地质论评, 2015, 61(5):1168-1176.
Google Scholar
ZHANG Y, SHAO Y J, QUAN W, et al. Rb-Sr isotope dating of the fluid inclusions in quartz from quartz-pyrite veins in the footwall of Xinqiao Cu-S-Fe deposit, Tongling[J]. Geological Review, 2015, 61(5):1168-1176.
Google Scholar
|
[129]
|
MAO G Z, HUA R M, LONG G M, et al. Rb-Sr dating of pyrite and quartz fluid inclusions and origin of ore-forming materials of the Jinshan Gold deposit, Northeast Jiangxi Province, South China[J]. Acta Geologica Sinica-English Edition, 2013, 87(6):1658-1667.
Google Scholar
|
[130]
|
TAN J, WEI J H, LI Y J, et al. Origin and geodynamic significance of fault-hosted massive sulfide gold deposits from the Guocheng-Liaoshang metallogenic belt, eastern Jiaodong Peninsula:Rb-Sr dating, and H-O-S-Pb isotopic constraints[J]. Ore Geology Reviews, 2015, 65:687-700.
Google Scholar
|
[131]
|
SCHNEIDER J, HAACK U, STEDINGK K. Rb-Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by paleomixing lines[J]. Geochimica et Cosmochimica Acta, 2003, 67(10):1803-1819.
Google Scholar
|
[132]
|
胡俊良,陈娇霞,徐德明,等.湘东北七宝山铜多金属矿床成矿时代及成矿物质来源——石英脉Rb-Sr定年和S-Pb同位素组成[J].地质通报, 2017, 36(5):857-866.
Google Scholar
HU J L, CHEN J X, XU D M, et al. Age and sources of the ore-forming material for the Qibaoshan Cu-polymetallic deposit in Hunan Province:evidence from quartz vein Rb-Sr isotopic dating and S-Pb isotopes[J]. Geological Bulletin of China, 2017, 36(5):857-866.
Google Scholar
|
[133]
|
刘建明,赵善仁,沈洁,等.成矿流体活动的同位素定年方法评述[J].地球物理学进展, 1998, 13(3):46-55.
Google Scholar
LIU J M, ZHAO S R, SHEN J, et al. Review on direct isotopic dating of hydrothermal ore-forming processes[J]. Progress in Geophysics, 1998, 13(3):46-55.
Google Scholar
|
[134]
|
姚海涛,郑海飞.流体包裹体Rb-Sr等时线定年的可靠性[J].地球化学, 2001, 30(6):507-511.
Google Scholar
YAO H T, ZHENG H F. Comment on the reliability of Rb Sr isochrone dating by using fluid inclusion in minerals[J]. Geochimica, 2001, 30(6):507-511.
Google Scholar
|
[135]
|
QIU H N, DAI T M. 40Ar/39Ar technique for dating the fluid inclusions of quartz from a hydrothermal deposit[J]. Chinese Science Bulletin, 1989, 34(22):1887-1890.
Google Scholar
|
[136]
|
TURNER G, BANNON M P. Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in southwest and northeast England[J]. Geochimica et Cosmochimica Acta, 1992, 56(1):227-243.
Google Scholar
|
[137]
|
KENDRICK M A, MILLER J M, PHILLIPS D. Part II. Evaluation of 40Ar-39Ar quartz ages:Implications for fluid inclusion retentivity and determination of initial 40Ar/36Ar values in Proterozoic samples[J]. Geochimica et Cosmochimica Acta, 2006, 70(10):2562-2576.
Google Scholar
|
[138]
|
LIU J, WU G, QIU H N, et al. 40Ar/39Ar dating, fluid inclusions and S-Pb isotope systematics of the Shabaosi gold deposit, Heilongjiang Province, China[J]. Geological Journal, 2015, 50(5):592-606.
Google Scholar
|
[139]
|
BAI X J, JIANG Y D, HU R G, et al. Revealing mineralization and subsequent hydrothermal events:Insights from 40Ar/39Ar isochron and novel gas mixing lines of hydrothermal quartzs by progressive crushing[J]. Chemical Geology, 2018, 483:332-341.
Google Scholar
|
[140]
|
BAI X J, LIU M, HU R G, et al. Well-Constrained mineralization ages by integrated 40Ar/39Ar and U-Pb dating techniques for the Xitian W-Sn polymetallic deposit, South China[J]. Economic Geology, 2022, 117(4):833-852.
Google Scholar
|
[141]
|
HU R G, PANG B C, BAI X J, et al. Progressive crushing 40Ar/39Ar dating of a gold-bearing quartz vein from the Liaotun Carlin-type gold deposit, Guangxi, southern China[J]. Scientific Reports, 2022, 12(1):12793.
Google Scholar
|
[142]
|
COSTA F, SHEA T, UBIDE T. Diffusion chronometry and the timescales of magmatic processes[J]. Nature Reviews Earth&Environment, 2020, 1(4):201-214.
Google Scholar
|
[143]
|
TURNER S, COSTA F. Measuring timescales of magmatic evolution[J]. Elements, 2007, 3(4):267-272.
Google Scholar
|
[144]
|
BRADSHAW R W, KENT A J R. The analytical limits of modeling short diffusion timescales[J]. Chemical Geology, 2017, 466:667-677.
Google Scholar
|
[145]
|
MIZUTANI S, OHDOMARI I, MIYAZAWA T, et al. Diffusion of gallium in quartz and bulk-fused silica[J]. Journal of Applied Physics, 1982, 53(3):1470-1473.
Google Scholar
|
[146]
|
PANKRATH R, FLÖRKE O W. Kinetics of Al-Si exchange in low and high quartz:calculation of Al diffusion coefficients[J]. European Journal of Mineralogy, 1994, 6(4):435-457.
Google Scholar
|
[147]
|
CHERNIAK D J. Silicon self-diffusion in single-crystal natural quartz and feldspar[J]. Earth and Planetary Science Letters, 2003, 214(3/4):655-668.
Google Scholar
|
[148]
|
CHEN Q, WANG C M, BAGAS L, et al. Time scales of multistage magma-related hydrothermal fluids at the giant Yulong porphyry Cu-Mo deposit in eastern Tibet:insights from titanium diffusion in quartz[J]. Ore Geology Reviews, 2021, 139:104459.
Google Scholar
|
[149]
|
LI Y, ALLEN M B, LI X H. Millennial pulses of ore formation and an extra-high Tibetan Plateau[J]. Geology, 2022, 50(6):665-669.
Google Scholar
|
[150]
|
LI Y, PAN J Y, WU L G, et al. Transient tin mineralization from cooling of magmatic fluids in a long-lived system[J]. Geology, 2023, 51(3):305-309.
Google Scholar
|
[151]
|
SCHRÖN W, BAUMANN L, RANK K. Zur Charakterisierung von Quartzgenerationen in den postmagmatogenen Erzformationen des Erzgebirges[J]. Zeitschrift für geologische Wissenschaften Berlin, 1982, 10(12):1499-1521.
Google Scholar
|
[152]
|
唐宏,张辉.可可托海3号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化[J].矿物学报, 2018, 38(1):15-24.
Google Scholar
TANG H, ZHANG H. Characteristics of trace elements in quartz from No.3 pegmatite, Koktokay area, Xinjiang autonomous region, China and implication for magmatic-hydrothermal evolution[J]. Acta Mineralogica Sinica, 2018, 38(1):15-24.
Google Scholar
|
[153]
|
BREITER K M. Evolution of rare-metal granitic magmas documented by quartz chemistry[J]. European Journal of Mineralogy, 2009, 21(2):335-346.
Google Scholar
|
[154]
|
BREITER K, SVOJTKA M, ACKERMAN L, et al. Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušné hory/Erzgebirge Mts, Czech Republic/Germany):insights into the volcano-plutonic complex evolution[J]. Chemical Geology, 2012, 326/327:36-50.
Google Scholar
|
[155]
|
PETERKOVÁ T, DOLEJŠ D. Magmatic-hydrothermal transition of Mo-W-mineralized granite-pegmatite-greisen system recorded by trace elements in quartz:Krupka district, Eastern Krušné hory/Erzgebirge[J]. Chemical Geology, 2019, 523:179-202.
Google Scholar
|
[156]
|
BREITER K, ACKERMAN L, SVOJTKA M, et al. Behavior of trace elements in quartz from plutons of different geochemical signature:a case study from the Bohemian Massif, Czech Republic[J]. Lithos, 2013, 175/176:54-67.
Google Scholar
|
[157]
|
王瑀, 邱昆峰, 侯照亮, 等. 石英Ti/Ge-P:基于机器学习的矿床类型判别新图解[J]. 岩石学报, 2022, 38(1):281-290.
Google Scholar
WANG Y, QIU K F, HOU Z L, et al. Quartz Ti/Ge-P discrimination diagram:a machine learning based approach for deposit classification[J]. Acta Petrologica Sinica, 2022, 38(1):281-290.
Google Scholar
|
[158]
|
CHANG Z S, HEDENQUIST J W, WHITE N C, et al. Exploration tools for linked porphyry and epithermal deposits:example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology, 2011, 106(8):1365-1398.
Google Scholar
|
[159]
|
WILKINSON J J, CHANG Z S, COOKE D R, et al. The chlorite proximitor:a new tool for detecting porphyry ore deposits[J]. Journal of Geochemical Exploration, 2015, 152:10-26.
Google Scholar
|
[160]
|
COOKE D R, AGNEW P, HOLLINGS P, et al. Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits:detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration[J]. Geochemistry:Exploration, Environment, Analysis, 2020, 20(2):176-188.
Google Scholar
|
[161]
|
PACEY A, WILKINSON J J, COOKE D R. Chlorite and epidote mineral chemistry in porphyry ore systems:a case study of the Northparkes district, New South Wales, Australia[J]. Economic Geology, 2020, 115(4):701-727.
Google Scholar
|