2022 Vol. 31, No. 1
Article Contents

BAO Shan-dong, ZENG Biao, BAI Zong-hai, HUANG Qing-hua, YUAN Yong-tao, QI Wen, XIONG Shou-jia. APPLICATION OF COMPREHENSIVE GEOPHYSICAL PROSPECTING METHODS IN EXPLORATION OF LITHIUM-BERYLLIUM RARE METAL AND RARE EARTH ORES[J]. Geology and Resources, 2022, 31(1): 59-67, 46. doi: 10.13686/j.cnki.dzyzy.2022.01.007
Citation: BAO Shan-dong, ZENG Biao, BAI Zong-hai, HUANG Qing-hua, YUAN Yong-tao, QI Wen, XIONG Shou-jia. APPLICATION OF COMPREHENSIVE GEOPHYSICAL PROSPECTING METHODS IN EXPLORATION OF LITHIUM-BERYLLIUM RARE METAL AND RARE EARTH ORES[J]. Geology and Resources, 2022, 31(1): 59-67, 46. doi: 10.13686/j.cnki.dzyzy.2022.01.007

APPLICATION OF COMPREHENSIVE GEOPHYSICAL PROSPECTING METHODS IN EXPLORATION OF LITHIUM-BERYLLIUM RARE METAL AND RARE EARTH ORES

More Information
  • The correlation between content assemblage of radionuclides in ores and ore content of rock is analyzed to guide the exploration of lithium-beryllium rare earth ore resources. The granite pegmatite dikes in Chakabeishan area are measured for magnetic and radioactive characteristics by using ENVI Pro proton magnetometer and ARD multichannel gamma-ray spectrometer, to determine the content distribution rule and anomaly location of 238U, 232Th and 40K, delineate ore-bearing rock bodies, extract information and analyze the correlation between magnetic anomaly and radioactive element content. The results show that the background field with high U, Th and K in the north anomaly area is mainly controlled by epimetamorphic rocks originated from sedimentary rocks. In the middle and southern anomaly areas, the area near the joint of two veins and contact zone where the magnetic anomalies overlap U-Th mixed anomalies have the greatest potential for rare metal and rare earth ores exploration, reflecting that the correlation analysis of magnetic survey and energy spectrum measurement can provide a good geophysical basis for future prospecting.

  • 加载中
  • [1] 李善平, 薛万文, 任华, 等. 青海省"三稀"矿产资源现状及成矿规律[J]. 青海科技, 2018, 25(6): 10-15. doi: 10.3969/j.issn.1005-9393.2018.06.003

    CrossRef Google Scholar

    Li S P, Xue W W, Ren H, et al. Present situation and metallogenic regularity of RE-REE mineral resources in Qinghai Province[J]. Qinghai Science and Technology, 2018, 25(6): 10-15. (in Chinese) doi: 10.3969/j.issn.1005-9393.2018.06.003

    CrossRef Google Scholar

    [2] 王登红, 王瑞江, 孙艳, 等. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 2016, 37(5): 569-580.

    Google Scholar

    Wang D H, Wang R J, Sun Y, et al. A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J]. Acta Geoscientica Sinica, 2016, 37(5): 569-580.

    Google Scholar

    [3] 韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报, 2008, 24(4): 655-660.

    Google Scholar

    Han B F. A preliminary comparison of Mesozoic granitoids and rare metal deposits in Chinese and Russian Altai Mountains[J]. Acta Petrologica Sinica, 2008, 24(4): 655-660.

    Google Scholar

    [4] 王秉璋, 韩杰, 谢祥镭, 等. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 2020, 44(1): 69-79.

    Google Scholar

    Wang B Z, Han J, Xie X L, et al. Discovery of the Indosinian (beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau: Implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 2020, 44(1): 69-79.

    Google Scholar

    [5] 陈浩, 陈志文, 田碧, 等. 地面γ能谱测量在铌稀土矿勘查中的应用[J]. 资源环境与工程, 2016, 30(6): 994-998.

    Google Scholar

    Chen H, Chen Z E, Tian B, et al. The application of ground gamma spectrometry in niobium-rare earth ore prospecting[J]. Resource Environment &Engineering, 2016, 30(6): 994-998.

    Google Scholar

    [6] 熊意林, 钟石玉, 李志刚, 等. 竹山土地岭一带铌钽矿床地质特征及找矿前景分析[J]. 资源环境与工程, 2018, 32(S1): 1-7, 43.

    Google Scholar

    Xiong Y L, Zhong S Y, Li Z G, et al. Geological characteristics and prospecting potential of niobium-tantalum deposit in the Tudiling area, Zhushan[J]. Resources Environment & Engineering, 2018, 32(S1): 1-7, 43.

    Google Scholar

    [7] 杜发, 张秀萍, 毛立全, 等. 航磁在阿尔金东段铌钽稀有金属找矿中的应用[J]. 物探与化探, 2018, 42(5): 902-908.

    Google Scholar

    Du F, Zhang X P, Mao L Q, et al. The application of aeromagnetic to the prospecting of Nb-Ta deposits in Eastern Altun[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 902-908.

    Google Scholar

    [8] 王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001

    CrossRef Google Scholar

    Wang D H, Wang R J, Li J K, et al. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J]. Geology in China, 2013, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001

    CrossRef Google Scholar

    [9] 杨荣, 范俊波, 黄韬, 等. 磁法测量在甲基卡地区找矿中的应用[J]. 四川地质学报, 2017, 37(4): 692-695, 699. doi: 10.3969/j.issn.1006-0995.2017.04.038

    CrossRef Google Scholar

    Yang R, Fan J B, Huang T, et al. The application of magnetic survey to the prospecting in the Jiajika region[J]. Acta Geologica Sichuan, 2017, 37(4): 692-695, 699. doi: 10.3969/j.issn.1006-0995.2017.04.038

    CrossRef Google Scholar

    [10] 韩志滨, 马宏伟, 杜广仁. 大连市区地表天然放射性水平调查[J]. 地质与资源, 2020, 29(5): 483-489.

    Google Scholar

    Han Z B, Ma H W, Du G R. Investigation on the natural radioactivity level of ground surface in Dalian urban area[J]. Geology and Resources, 2020, 29(5): 483-489.

    Google Scholar

    [11] 苑永涛, 封建平, 王亚栋, 等. 综合物探在昆仑河黑刺沟金多金属矿MⅠ金矿带应用效果研究[J]. 矿产与地质, 2018, 32(4): 722-728. doi: 10.3969/j.issn.1001-5663.2018.04.017

    CrossRef Google Scholar

    Yuan Y T, Feng J P, Wang Y D, et al. On the application effect of complex geophysical prospecting on MⅠ gold ore belt of Heicigou Au polymetallic deposit in Kunlun River area[J]. Mineral Resources and Geology, 2018, 32(4): 722-728. doi: 10.3969/j.issn.1001-5663.2018.04.017

    CrossRef Google Scholar

    [12] 杨涛涛, 吕福亮, 李林, 等. 西沙海域上新统-全新统高伽马地层的发现及地质分析[J]. 地球物理学进展, 2019, 34(6): 2526-2532.

    Google Scholar

    Yang T T, Lü F L, Li L, et al. Identification and geology analysis of high natural gamma value formation of Pliocene-Holocene in Xishaoffshore[J]. Progress in Geophysics, 2019, 34(6): 2526-2532.

    Google Scholar

    [13] 国家国防科技工业局. EJ/T363-2012地面伽玛能谱测量规范[S]. 2013.

    Google Scholar

    State Administration of Science, Technology and Industry for National Defense. EJ/T363-2012 Specifications for ground γ-ray spectrometric survey[S]. 2013.

    Google Scholar

    [14] 王盘喜, 包民伟. 我国钽铌等稀有金属矿概况及找矿启示[J]. 金属矿山, 2015, 44(6): 92-97. doi: 10.3969/j.issn.1001-1250.2015.06.020

    CrossRef Google Scholar

    Wang P X, Bao M W. General situation and prospecting revelation of tantalum-niobium rare metal deposits in China[J]. Metal Mine, 2015, 44(6): 92-97. doi: 10.3969/j.issn.1001-1250.2015.06.020

    CrossRef Google Scholar

    [15] 朱卫平, 刘诗华, 朱宏伟, 等. 常用地球物理方法勘探深度研究[J]. 地球物理学进展, 2017, 32(6): 2608-2618.

    Google Scholar

    Zhu W P, Liu S H, Zhu H W, et al. Study on the exploration depth of geophysical methods commonly used[J]. Progress in Geophysics, 2017, 32(6): 2608-2618.

    Google Scholar

    [16] 乔耿彪, 丁建刚, 苏永海, 等. 新疆阿尔泰山别也萨麻斯一带发现新的锂、铍、铌、钽等稀有金属矿点[J]. 中国地质, 2020, 47(2): 542-543.

    Google Scholar

    Qiao G B, Ding J G, Su Y H, et al. The discovery of Li, Be, Nb, Ta rare metal ore spots in the Bieyesamas area in Altay, Xinjiang[J]. Geology in China, 2020, 47(2): 542-543.

    Google Scholar

    [17] 刘强, 金洪涛, 朱巍, 等. 东北地区煤田地质环境放射性综合评价方法研究[J]. 地质与资源, 2020, 29(4): 388-396.

    Google Scholar

    Liu Q, Jin H T, Zhu W, et al. Study on the Comprehensive evaluation method of Geoenvironmental radioactivity of coalfields in Northeast China[J]. Geology and Resources, 2020, 29(4): 388-396.

    Google Scholar

    [18] 刘应冬, 周玉, 郭润平, 等. 四川甲基卡锂辉石矿床西缘地面高精度磁测异常特征及找矿预测[J]. 矿产勘查, 2018, 9(3): 428-437. doi: 10.3969/j.issn.1674-7801.2018.03.020

    CrossRef Google Scholar

    Liu Y D, Zhou Y, Guo R P, et al. Anomalies characteristics of ground high-precision magnetic survey and the prospecting prediction in Jiajika style spodumene deposits, Sichuan[J]. Mineral Exploration, 2018, 9(3): 428-437. doi: 10.3969/j.issn.1674-7801.2018.03.020

    CrossRef Google Scholar

    [19] 叶小拼. 桂西沉积型锂矿资源潜力分析[J]. 地质与资源, 2020, 29(5): 429-434.

    Google Scholar

    Ye X P. Resource potential analysis of sedimentary lithium deposits in west Guangxi Region[J]. Geology and Resources, 2020, 29(5): 429-434.

    Google Scholar

    [20] 付小方, 袁蔺平, 王登红, 等. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质, 2015, 34(6): 1172-1186.

    Google Scholar

    Fu X F, Yuan L P, Wang D H, et al. Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan[J]. Mineral Deposits, 2015, 34(6): 1172-1186.

    Google Scholar

    [21] 李必红, 程纪星, 杨龙泉, 等. 放射性物探在相山盆地深部火成岩型铀矿勘查中的应用[J]. 世界核地质科学, 2017, 34(3): 161- 166, 179. doi: 10.3969/j.issn.1672-0636.2017.03.006

    CrossRef Google Scholar

    Li B H, Cheng J X, Yang L Q, et al. Application of radioactive geophysical exploration for the deep volcanic rock type uranium deposit exploration in Xiangshan basin[J]. World Nuclear Geoscience, 2017, 34(3): 161-166, 179. doi: 10.3969/j.issn.1672-0636.2017.03.006

    CrossRef Google Scholar

    [22] 李贤芳, 张玉洁, 田世洪. 锂同位素在伟晶岩矿床成因研究中的应用[J]. 中国地质, 2019, 46(2): 419-429.

    Google Scholar

    Li X F, Zhang Y J, Tian S H. Application of lithium isotopes in genetic study of pegmatite deposits[J]. Geology in China, 2019, 46(2): 419-429.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(7)

Article Metrics

Article views(1905) PDF downloads(111) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint