2022 Vol. 38, No. 4
Article Contents

ZHANG Jun-Tao,XIE Xiao-Zhan,YAO Dong-Hong,ZENG Hong-Wei,ZHANG Yue-Yue, . 2022. Age and Petrogenesis of the Shuiyuan Granite, Southern Zhuguang Mountain, Northern Guangdong Province. South China Geology, 38(4): 596-613. doi: 10.3969/j.issn.2097-0013.2022.04.003
Citation: ZHANG Jun-Tao,XIE Xiao-Zhan,YAO Dong-Hong,ZENG Hong-Wei,ZHANG Yue-Yue, . 2022. Age and Petrogenesis of the Shuiyuan Granite, Southern Zhuguang Mountain, Northern Guangdong Province. South China Geology, 38(4): 596-613. doi: 10.3969/j.issn.2097-0013.2022.04.003

Age and Petrogenesis of the Shuiyuan Granite, Southern Zhuguang Mountain, Northern Guangdong Province

  • The shuiyuan pluton is located at the southern Zhuguang Mountain. It is mainly composed of fine-grained little-porphyraceous biotite monzogranite, while fine-grained little-porphyraceous two-mica monzogranite and fine-grained two-mica monzogranite are distributed in a small amount. LA-ICP-MS U-Pb zircon analysis yields 206Pb/238U weighted mean age of (240.6±1.6) Ma,(240.2±1.7) Ma and (240.0±2.9) Ma for the above three rocks, which indicates the shuiyuan pluton formed at the Middle Triassic for magma movement. Geohemical and Sr-Nd-Hf isotopic analyses show that the granites have high SiO2 (between 68.14% and 70.22%), rich alkali (between 6.59% and 7.50%), high potassium (the value of K2O/Na2O above 1) and low FeO, MgO, CaO, TiO2 and P2O5. Aluminum saturation indexes are greater than 1.1 (the value of ACNK ranging from 1.56 to 1.90) and the Littman indexes are less than 3.3(the value of δ ranging from 1.73 to 2.14). The granites often contain aluminum-rich minerals such as muscovite,which indicates they belong to strong peraluminous granite of high potassium calc alkaline series. The granites are characterized by high total rare earth content, light rare earth enrichment (the value of LREE/HREE ranging from 13.41 to 19.90), and medium negative europium anomaly(δEu ranging from 0.43 to 0.45).They are enriched in LILEs(Rb, Th, U, K and Pb), but depleted in Ba and Sr, and lack in HFSEs(Nb, Ta, Ti and Zr).The granites have the lower value of εNd (t) (between -10.8 and -11.3) and εHf (t) (ranging from -12.5 to -9.4). The second stage model age of Nd and Hf are respectively 1.86-2.02 Ga and 1.86-2.06 Ga. The results of main trace elements and Sr-Nd-Hf isotopic composition analysis indicate that the source material of the shuiyuan pluton generates from the components of the continental crust with high Paleoproterozoic maturity (mainly meta argillaceous rocks with little greywacke), which is obviously different from the characteristics of I-type and A-type granites and belongs to S-type granite. Combined with the analysis of diagenetic temperature and pressure conditions and the background of regional geological tectonic evolution, this paper believes that the shuiyuan pluton is formed by partial melting of the ancient crustal components in the tectonic transition stage from collision thickening to extension thinning through heating and decompression.
  • 加载中
  • [1] 陈江峰,郭新生,汤加富,周泰禧.1999.中国东南地壳增长与Nd同位素模式年龄[J].南京大学学报:自然科学版,35(6):651-685.

    Google Scholar

    [2] 邓访陵.1987.诸广山花岗岩复式岩基南部的同位素地质年代学[J].地球化学,16(2):141-152.

    Google Scholar

    [3] 邓 平,舒良树,谭正中.2003.诸广—贵东大型铀矿聚集区富铀矿成矿地质条件[J].地质论评,49(5):486-494.

    Google Scholar

    [4] 邓 平,任纪舜,凌洪飞,沈渭洲,孙立强,朱 捌,谭正中.2011.诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J].地质论评,57(6):881-888.

    Google Scholar

    [5] 邓 平,任纪舜,凌洪飞,沈渭洲,孙立强,朱 捌,谭正中.2012.诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义[J].科学通报,57(14):1231-1241.

    Google Scholar

    [6] 地矿部南岭项目花岗岩专题组.1989.南岭花岗岩地质及其成因和成矿作用[M].地质出版社.

    Google Scholar

    [7] 杜乐天.1982.花岗岩型铀矿文集[M],北京:原子能出版社.

    Google Scholar

    [8] 高 山,骆庭川,张本仁,张宏飞,韩吟文,赵志丹,Kern H.1999.中国东部地壳的结构和组成[J].中国科学(D辑),29(3):204-213.

    Google Scholar

    [9] 广东省地质矿产局.1988.广东省区域地质志[M].北京:地质出版社,1-846.

    Google Scholar

    [10] 郭 锋,范蔚茗,林 舸,林源贤.1997.湘南道县辉长岩包体的年代学研究及成因探讨[J].科学通报,42:1661-1664.

    Google Scholar

    [11] 胡瑞忠.1994.花岗岩型铀矿床成因讨论—以华南为例[J].地球科学进展,9(2):41-46.

    Google Scholar

    [12] 金景福,胡瑞忠.1985. 302铀矿床成因探讨[J].成都地质学院学报,(4):1-10.

    Google Scholar

    [13] 金文山.1998.《华南大陆深部地壳结构及其演化》一书简介[J].地球化学,27(4):389-390.

    Google Scholar

    [14] 李子颖.2006.华南热点铀成矿作用[J].铀矿地质,22(2):65-69.

    Google Scholar

    [15] 李献华.1990.万洋山—诸广山花岗岩复式岩基的岩浆活动时代与地壳运动[J].中国科学(B辑),20(7):747-755.

    Google Scholar

    [16] 凌洪飞.2011.论花岗岩型铀矿床热液来源—来自氧逸度条件的制约[J].地质论评,57(2):193-206.

    Google Scholar

    [17] 廖忠礼,莫宣学,潘桂棠,朱弟成,王立全,张予杰,彭智敏.2006.西藏过铝花岗岩的岩石化学特征及成因探讨[J].地质学报,80(9):1329-1341.

    Google Scholar

    [18] 刘昌实,陈小明,陈培荣,王汝成,胡 欢.2003. A型岩套的分类,判别标志和成因[J].高校地质学报,9(4):573-591.

    Google Scholar

    [19] 莫柱荪.1980.南岭花岗岩地质学[M].北京:地质出版社.

    Google Scholar

    [20] 庞雅庆,范洪海,高飞,吴建勇,谢小占.2019.粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪[J].岩石学报,35(9):2765-2773.

    Google Scholar

    [21] 秦江锋,赖绍聪,李永飞,白 莉,王 娟.2005.扬子板块北缘阳坝岩体锆石饱和温度的计算及其意义[J].西北地质,38(3):1-6.

    Google Scholar

    [22] 商朋强,胡瑞忠,毕献武,刘 雷,张国全.2007.华南热液铀矿成矿作用若干问题探讨[J].矿物岩石地球化学通报,26(3):290-294.

    Google Scholar

    [23] 邵 飞.2007.水-岩相互作用及其与铀成矿关系研究-以相山铀矿田为例[D].中国地质大学(北京)博士学位论文.

    Google Scholar

    [24] 沈渭洲,朱金初,刘昌实,徐士进,凌洪飞.1993.华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约[J].岩石学报,9(2):115-124.

    Google Scholar

    [25] 时章亮,张宏飞,蔡宏明.2009.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J].地球科学,34(4):569-584.

    Google Scholar

    [26] 舒良树,邓 平,王 彬,谭正中,余心起,孙 岩.2004.南雄—诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约[J].中国科学(D辑),34(1):1-13.

    Google Scholar

    [27] 舒良树,周新民,邓 平,余心起.2006.南岭构造带的基本地质特征[J].地质论评,52(2):251-265.

    Google Scholar

    [28] 舒良树.2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.

    Google Scholar

    [29] 孙立强.2018.南岭诸广山地区中生代花岗岩成因及其对铀成矿作用的启示[D].南京大学博士学位论文.

    Google Scholar

    [30] 孙 涛,周新民,陈培荣,李惠民,周红英,王志成,沈渭洲.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑),33(12):1209-1218

    Google Scholar

    [31] 王联魁,刘铁庚.1987.华南花岗岩铀矿H、O、S、Pb同位素研究[J].地球化学,(1):67-78.

    Google Scholar

    [32] 王 强,赵振华,简 平,熊小林,包志伟,戴橦谟.2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J].岩石学报,21(3):795-808.

    Google Scholar

    [33] 吴福元,李献华,杨进辉,郑永飞.2007a.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.

    Google Scholar

    [34] 吴福元,李献华,郑永飞,高 山.2007b. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.

    Google Scholar

    [35] 夏金龙,黄圭成,定 立,丁丽雪,陈希清.2021.南岭地区诸广山复式岩体年代格架研究[J].华南地质,37(3):280-297.

    Google Scholar

    [36] 谢国刚,李均辉,李武显,唐红峰,李惠民,周新民.1997.庐山前震旦纪岩石中锆石U-Pb法定年与其地质意义[J].地质科学,32(1):110-115.

    Google Scholar

    [37] 于玉帅,戴平云,郭福生,谢小占,鲍 波.2017.粤北扶溪岩体成因及时代:来自矿物化学、岩石地球化学及LA-ICP-MS锆石U-Pb年龄证据[J].地质科技情报,36(6):71-82.

    Google Scholar

    [38] 袁忠信,张宗清.1992.南岭花岗岩类岩石Sm、Nd同位素特征及岩石成因探讨[J].地质论评,38(1):1-15.

    Google Scholar

    [39] 章邦桐.1990.内生铀矿床及其研究方法[M].北京:原子能出版社,1-538.

    Google Scholar

    [40] 张国全,胡瑞忠,商朋强,刘 雷,杨社锋.2007.华南花岗岩型铀矿床成矿机理研究进展[J].矿物岩石地球化学通报,26(4):399-404.

    Google Scholar

    [41] 张 敏.2006.粤北产铀岩体的年代学和地球化学及铀成矿机制研究[D].南京大学博士学位论文.

    Google Scholar

    [42] 张 敏,陈培荣,黄国龙,谭正中,凌洪飞,陈卫锋.2006.南岭东段龙源坝复式岩体LA-ICPMS锆石U-Pb年龄及其地质意义[J].地质学报,80(7):985-994.

    Google Scholar

    [43] 张 旗,王 焰,李承东,金惟俊,贾秀勤.2006.花岗岩按照压力的分类[J].地质通报,25(11):1274-1274.

    Google Scholar

    [44] 张 旗,金惟俊,李承东,王元龙.2010.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报,26(4):985-1015.

    Google Scholar

    [45] 张 旗.2013. A型花岗岩的标志和判别-兼答汪洋等对“A型花岗岩的实质是什么”的质疑[J].岩石矿物学杂志,32(2):267-274.

    Google Scholar

    [46] 张彦春.2002.诸广、贵东花岗岩中碱性地幔流体与铀成矿[J].铀矿地质,18(4):210-219.

    Google Scholar

    [47] 郑永飞.2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报,53(18):2129-2152.

    Google Scholar

    [48] 朱 捌,邓 平,凌洪飞,沈渭洲,谭正中.2009.粤北红山岩体形成时代及成因研究[J].铀矿地质,25(6):321-329.

    Google Scholar

    [49] 朱 捌.2010.地幔流体与铀成矿作用研究—以诸广山南部铀矿田为例[D].成都理工大学博士学位论文.

    Google Scholar

    [50] Allègre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 38:1-25.

    Google Scholar

    [51] Bouseily A M E, Sokkary A A E. 1975. The relation between Rb, Ba and Sr in granitic rocks [J]. Chemical Geology, 16(3): 207-219.

    Google Scholar

    [52] Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam [J]. Geology, 29(3), 211-214.

    Google Scholar

    [53] Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt [J]. Transactions of the Royal Society of Edinburgh: Earth Science, 83: 1-26.

    Google Scholar

    [54] Dai B Z, Jiang S Y, Jiang Y H, Zhao K D, Liu D Y. 2008. Geochronology, geochemistry and Hf-Sr-Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: Petrogenesis and implications for lower crust evolution [J]. Lithos, 102:65-87.

    Google Scholar

    [55] Douce A , Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites [J]. Contributions to Mineralogy and Petrology, 107(2): 202-218.

    Google Scholar

    [56] Lassiter J C, Depaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints [C]//Mahoney J(eds.). Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. USA: American Geophysical Union: Geophysical Monography, 100: 335-355.

    Google Scholar

    [57] Li X H, Chung S L, Zhou H W, Lo C H, Liu Y, Chen C W. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China [J]. Geological Society London Special Publications, 226:193-215.

    Google Scholar

    [58] Ling H F, Shen W Z, Wang R C, Xu S J. 2001. Geochemical characteristics and genesis of Neoproterozoic granitoids in the northwestern margin of the Yangtze Block [J]. 26(9-10):805-819.

    Google Scholar

    [59] Loiselle M C, Wones D R.1979. Characteristics and origin of anorogenic granites [J]. Geological Society of America Abstracts with Programs, 11(7):468.

    Google Scholar

    [60] Miller C F, Mcdowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance [J]. Geology, 31(6): 529-532.

    Google Scholar

    [61] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin, 101(5): 635-643.

    Google Scholar

    [62] Pearce J A .1996. Sources and settings of granitic rocks [J]. Episodes, 19(4):120-125.

    Google Scholar

    [63] Rochehakansson H, Leterrier J F, Claude P, Marchal M. 1980. Classification of volcanic and plutonic rocks using R1-R2 diagram major-elements analysis its relationships with current nomenclature [J]. Chemical Geology, 29:183-210.

    Google Scholar

    [64] Sylvester P J. 1998. Post-collisional strongly peraluminous granites [J]. lithos, 1998, 45: 29-44.

    Google Scholar

    [65] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 42(1): 313-345.

    Google Scholar

    [66] Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 33(2): 241-265.

    Google Scholar

    [67] Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in variety of crustal magma types [J]. Earth and Planetary Science Letters, 64(2): 295-304.

    Google Scholar

    [68] Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 95: 407-419.

    Google Scholar

    [69] Wilson M. 1989. Review of igneous petrogenesis: A global tectonic approach [J]. Terra Nova, 1(2): 218-222.

    Google Scholar

    [70] Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology [J]. Chemical Geology, 234(1): 105-126.

    Google Scholar

    [71] Wu F Y, Liu X C, Ji W Q, Wang J M, Yang L. 2017. Highly fractionated granites: recognition and research [J]. Science China: Earth Sciences, 60(7): 1201-1219.

    Google Scholar

    [72] Yang J H , Wu F Y, Wilde S A, Belousova E, Griffin W L. 2008. Mesozoic decratonization of the North China block [J]. Geology, 36(6): 467-470.

    Google Scholar

    [73] Yu Y S, Zhou Y, Dai P Y, Liu A S, Yang Q D, Bao B, Xie X Z, Wang C S. 2022. Geochronology and petrogenesis of the Early Paleozoic magnesian granodiorite in the southern Zhuguangshan, South China Block and their geodynamic significance [J]. Geological Journal, 57: 4550-4571.

    Google Scholar

    [74] Yuan H L, Gao S, Liu X M, Li H M, Günther D, Wu F Y. 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-inductively Coupled Plasma-Mass Spectrometry [J]. Geostandards and Geoanalytical Research, 28(3): 353-370.

    Google Scholar

    [75] Zhang H F, Harris N, Parrish R , Kelley S , Zhang L , Rogers N, Argles T, King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform [J]. Earth and Planetary Science Letters, 228(1-2): 195-212.

    Google Scholar

    [76] Zhou X M, Sun T, Shen W Z, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A Response to Tectonic Evolution [J]. Episodes, 29(1):26-33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(400) PDF downloads(53) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint