Abejón Azucena, Garea Aurora, Ángel Irabien. 2015. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption[J]. Separation and Purification Technology, 144: 46-53.
Google Scholar
|
Ahn Joo. 2012. Geochemical occurrences of arsenic and fluoride in bedrock groundwater: A case study in Geumsan County, Korea[J]. Environmental Geochemistry & Health, 34(1): 43-54.
Google Scholar
|
Aliaskari Mehran, Andrea I S. 2021. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 190: 116683.
Google Scholar
|
Alkurdi Susan S A, Herath Indika, Bundschuh Jochen, Raed A Al-Juboori, Vithanage Meththika, Mohan Dinesh. 2019. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research[J]. Environment International, 127: 52-69.
Google Scholar
|
Amalia Terracciano, Jie Ge, Xiaoguang Meng. 2015. A comprehensive study of treatment of arsenic in water combining oxidation, coagulation, and filtration[J]. Journal of Environmental Sciences, 36(10): 178-180.
Google Scholar
|
Amen Rabia, Bashir Hamna, Bibi Irshad, Sabry M Shaheen, Nabeel Khan Niazi, Shahid Muhammad, Muhammad Mahroz Hussain, Antoniadis Vasileios, Muhammad Bilal Shakoor, Samir G Al-Solaimani, Wang Hailong, Bundschuh Jochen, Rinklebe Jörg. 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions[J]. Chemical Engineering Journal, 396: 125195.
Google Scholar
|
Amrose Susan E, Bandaru Siva R S, Delaire Caroline, Genuchten Case M van, Dutta Amit, DebSarkar Anupam, Orr Christopher, Roy Joyashree, Das Abhijit, Gadgil Ashok J. 2014. Electro-chemical arsenic remediation: Field trials in West Bengal[J]. Science of the Total Environment, 488/489: 539-546.
Google Scholar
|
An Byungryul, Liang Qiqi, Zhao Dongye. 2011. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles[J]. Water Research, 45(5): 1961-1972.
Google Scholar
|
An Byungryul, Thomas R Steinwinder, Zhao Dongye. 2005. Selective removal of arsenate from drinking water using a polymeric ligand exchanger[J]. Water Research, 39(20): 4993-5004.
Google Scholar
|
Arif Sadia, Saqib Hira, Mubashir Muhammad, Malik Shaukat Iqbal, Mukhtar Ahmad, Saqib Sidra, Ullah Sami, Show Pau Loke. 2021. Comparison of Nigella sativa and Trachyspermum ammi via experimental investigation and biotechnological potential[J]. Chemical Engineering and Processing-Process Intensification, 161: 108313.
Google Scholar
|
Ayoob S, Gupta A K, Bhat Venugopal T. 2008. A conceptual overview on sustainable technologies for the defluoridation of drinking water[J]. Critical Reviews in Environmental Science & Technology, 38(6): 401-470.
Google Scholar
|
Bachate Sachin P, Khapare Rashmi M, Kodam Kisan M. 2012. Oxidation of arsenite by two β-proteobacteria isolated from soil[J]. Applied Microbiology and Biotechnology, 93(5): 2135-2145.
Google Scholar
|
Basu Ankita, Saha Debabrata, Saha Rumpa, Ghosh Tuhin, Saha Bidyut. 2014. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water[J]. Research on Chemical Intermediates, 40(2): 447-485.
Google Scholar
|
Battaglia-Brunet F, Dictor M C, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P. 2002. An arsenic(III)-oxidizing bacterial population: Selection, characterization, and performance in reactors[J]. Journal of Applied Microbiology, 93(4): 656-667.
Google Scholar
|
Bhattacharjee Santanu, Chakravarty Sanchita, Maity S, Dureja V, Gupta K K. 2005. Metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic[J]. Chemosphere, 58(9): 1203-1217.
Google Scholar
|
Bhattacharya Sayan, Sharma Prabhakar, Mitra Sayantan, Mallick Ivy, Ghosh Abhrajyoti. 2021. Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia[J]. Environmental Nanotechnology, Monitoring & Management, 15: 100430.
Google Scholar
|
Bose Purnendu, Sharma Archana. 2002. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment[J]. Water Research, 36(1): 4916-4926.
Google Scholar
|
Brandhuber Philip, Amy Gary. 2001. Arsenic removal by a charged ultrafiltration membrane—— influences of membrane operating conditions and water quality on arsenic rejection[J]. Desalination, 140(1): 1-14.
Google Scholar
|
Cao Wengeng, Guo Huaming, Zhang Yilong, Ma Rong, Li Yasong, Dong Qiuyao, Li Yuanjie, Zhao Ruike. 2017. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of the Total Environment, 613-614(1): 958-968.
Google Scholar
|
Casiot C, Pedron V, Bruneel Odile, Duran Robert, Personné Jean Christian, Gérard Grapin, Drakidès Christian, Elbaz-Poulichet Françoise. 2006. A new bacterial strain mediating as oxidation in the Fe-rich biofilm naturally growing in a groundwater Fe treatment pilot unit[J]. Chemosphere, 64(3): 492-496.
Google Scholar
|
Cesaro Patrizia, Cattaneo Chiara, Bona Elisa, Berta Graziella and Cavaletto Maria. 2015. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases[J]. Scientific Reports, 5(1): 14525.
Google Scholar
|
Chen Baoliang, Zhou Dandan, Zhu Lizhong. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 42(14): 5137-5143.
Google Scholar
|
Chen Bo, Zhu Zhiliang, Ma Jie, Qiu Yanling, Chen Junhong. 2013. Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance[J]. Journal of Materials Chemistry A, 1(37): 11355-11367.
Google Scholar
|
Cheng Wenpo. 2002. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution[J]. Chemosphere, 47(9): 963-969.
Google Scholar
|
Choong Thomas S Y, Chuah T G, Robiah Y, Gregory Koay F L, Azni I. 2007. Arsenic toxicity, health hazards and removal techniques from water: An overview[J]. Desalination, 217(1/3): 139-166.
Google Scholar
|
Clark William Mansfield. 1918. The differentiation of bacteria of the Colon-Aerogenes family[J]. American Water Works Association, 5(1): 26-32.
Google Scholar
|
Criscuoli Alessandra, Majumdar Swachchha, Figoli Alberto, Sahoo Ganesh C, Bafaro Patrizia, Bandyopadhyay Sibdas, Drioli Enrico. 2012. As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules[J]. Journal of Hazardous Materials, 211-212: 281-287.
Google Scholar
|
Cui Jinli, Jing Chuanyong, Che Dongsheng, Zhang Jianfeng, Duan Shuxuan. 2015. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study[J]. Journal of Environmental Sciences, 32: 42-53.
Google Scholar
|
Cullen William R, Reimer Kenneth J. 1989. Arsenic speciation in the environment[J]. Chemical Reviews, 89(4): 713-764.
Google Scholar
|
Deng Shubo, Li Zhijian, Huang Jun, Yu Gang. 2010. Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water[J]. Journal of Hazardous Materials, 179(1): 1014-1021.
Google Scholar
|
Dong Haoran, Guan Xiaohong, Lo Irene M C. 2012. Fate of As(V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction[J]. Water Research, 46(13): 4071-4080.
Google Scholar
|
Du Jingjing, Jing Chuanyong, Duan Jinming, Zhang Yongli, Hu Shan. 2014. Removal of arsenate with hydrous ferric oxide coprecipitation: Effect of humic acid[J]. Journal of Environmental Sciences, 26(2): 240-247.
Google Scholar
|
Emett Maree T, Khoe Ging H 2001. Photochemical oxidation of arsenic by oxygen and iron in acidic solutions[J]. Water Research, 35(3): 649-656.
Google Scholar
|
Eslami Hadi, Ehrampoush Mohammad Hassan, Esmaeili Abbas, Salmani Mohammad Hossein, Ebrahimi Ali Asghar, Ghaneian Mohammad Taghi, Falahzadeh Hossein, Reza Fouladi Fard. 2019. Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As(V) removal from contaminated water[J]. Journal of Cleaner Production, 208: 384-392.
Google Scholar
|
Fairen-Jimenez D, Moggach S A, Wharmby M T, Wright P A, Parsons S, Düren T. 2011. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 133(23): 8900-8902.
Google Scholar
|
Fan Maohong, Brown Robert C, Sung Shin Wu, Huang Chin-Pao, Ong Say K, van Leeuwen J. 2003. Comparisons of polymeric and conventional coagulants in Arsenic(V) removal[J]. Water Environment Research, 75(4): 308-313.
Google Scholar
|
Farid Hesami, Bijan Bina, Afshin Ebrahimi, Mohammad Mehdi Amin. 2013. Arsenic removal by coagulation using ferric chloride and chitosan from water[J]. International Journal of Environmental Health Engineering, 2(1): 17.
Google Scholar
|
Figoli Alberto, Cassano Alfredo, Criscuoli Alessandra, Mozumder M S I, Uddin M Tamez, Islam M Akhtarul, Drioli Enrico. 2010. Influence of operating parameters on the arsenic removal by nanofiltration[J]. Water Research, 44(1): 97-104.
Google Scholar
|
Gao Yichun, Wang Yanxin, Duan Yanhua, Deng Yamin, Guo Xinxin, Ding Xufeng. 2014. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China[J]. Journal of Geochemical Exploration, 138: 81-93.
Google Scholar
|
Ghurye Ganesh, Clifford Dennis, Tripp Anthony. 2004. Iron coagulation and direct microfiltration to remove arsenic from groundwater[J]. American Water Works Association, 96(4): 143-152.
Google Scholar
|
Ghurye Ganesh, Clifford Dennis. 2004. As(III) oxidation using chemical and solid-phase oxidants[J]. American Water Works Association, 96(1): 84-96.
Google Scholar
|
Guan Xiaohong, Du Juanshan, Meng Xiaoguang, Sun Yuankui, Sun Bo, Hu Qinghai. 2012. Application of titanium dioxide in arsenic removal from water: A review[J]. Journal of Hazardous Materials, 215-216: 1-16.
Google Scholar
|
Guo Huaming, Wen Dongguang, Liu Zeyun, Jia Yongfeng, Guo Qi. 2014. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 41(1): 196-217.
Google Scholar
|
Guo Huaming, Yang Suzhen, Tang Xiaohui, Li Yuan, Shen Zhaoli. 2008. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia[J]. Science of the Total Environment, 393(1): 131-144.
Google Scholar
|
Habuda- Stanić Mirna, Nujić Marija, Romić Željka, Lončarić Ante,Ergović Ravančić Maja, Kralj Edgar. 2015. Arsenic preoxidation and its removal from groundwater using iron coagulants[J]. Desalination and Water Treatment, 56(8): 2105-2113.
Google Scholar
|
Hai Ao, Li Lulu, Bu Yanpeng, Ma Shiyuan, Zhang Chenglin, Zeng Rui, Yuan Jinqiu, Zhang Yungeng, Chen Danyun. 2020. Progress in the synthesis of nano-alumina and its adsorption of As[J]. Journal of Functional Materials, 51(8): 30-38(in Chinese with English abstract).
Google Scholar
|
Han Binbing, Runnells Timothy, Zimbron Julio, Wickramasinghe Ranil. 2002. Arsenic removal from drinking water by flocculation and microfiltration[J]. Desalination, 145(1): 293-298.
Google Scholar
|
Han Shuangbao, Li Fucheng, Wang Sai, Li Haixue, Lei Yuan, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao,Wei Shibo, Zhao Minmin. 2021. Groundwater resource and eco-environmental problem of the Yellow River Basin[J]. Geology in China, 48(4): 1001-1019(in Chinese with English abstract).
Google Scholar
|
He Yingran, Liu Jiangtao, Han Gang, Chung Tai-Shung. 2018. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal[J]. Journal of Membrane Science, 555: 299-306.
Google Scholar
|
He Zongliang, Tian Senlin, Ning Ping. 2012. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin[J]. Journal of Rare Earths, 30(6): 563-572.
Google Scholar
|
Hu Tianjue, Zeng Guangming, Chen weiping, Li Xiaohong. 1998. Study on selective adsorption removal and recovery of As(Ⅲ) in waste solution containing As(Ⅲ) with chelating resin containing M ercapto Groups[J]. Journal of Hunan University(Natural Sciences), 25(6): 75-81(in Chinese with English abstract).
Google Scholar
|
Hu Yue, Treavor H Boyer. 2018. Removal of multiple drinking water contaminants by combined ion exchange resin in a completely mixed flow reactor[J]. Journal of Water Supply: Research and Technology-Aqua, 67(7): 659-672.
Google Scholar
|
Hug Stephan J, Canonica Laura, Wegelin Martin, Gechter Daniel, Gunten von Urs. 2001. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters[J]. Environmental Science & Technology, 35(10): 2114-2121.
Google Scholar
|
Jakariya M D, Bhattacharya Prosun. 2007. Use of GIS in local level participatory planning for arsenic mitigation: A case study from Matlab Upazila, Bangladesh[J]. Journal of environmental science and health, 42(12): 1933-1944.
Google Scholar
|
Jegadeesan Gautham, Al-Abed Souhail R, Sundaram Vijayakumar, Choi Hyeok, Scheckel Kirk G, Dionysiou Dionysios D. 2010. Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects[J]. Water Research, 44(3): 965-973.
Google Scholar
|
Jézéquel H, Chu K H. 2006. Removal of arsenate from aqueous solution by adsorption onto titanium dioxide nanoparticles[J]. Journal of Environmental Science and Health, Part A, 41(8): 1519-1528.
Google Scholar
|
Jiang Jiaqian. 2015. Removing arsenic from groundwater for the developing world-a review[J]. Water Science & Technology, 44(6): 89-98.
Google Scholar
|
Jiang Zhou. 2016. Environmental Biogeochemistry of Arsenic in Tengchong Geothermal Area, China[D]. China University of Geosciences(Wuhan).
Google Scholar
|
Joseph D Chwirka, Colvin Christian, Gomez Juan D, Mueller Paul A. 2004. Arsenic removal from drinking water using the coagulation/microfiltratin process[J]. American Water Works Association, 96(3): 106-114.
Google Scholar
|
Katsoyiannis Ioannis A, Hug Stephan J, Ammann Adrian, Zikoudi Antonia, Hatziliontos Christodoulos. 2007. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment[J]. Science of the Total Environment, 383(1/3): 128-140.
Google Scholar
|
Katsoyiannis Ioannis A, Zouboulis Anastasios I. 2004. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 38(1): 17-26.
Google Scholar
|
Kim Myoung-Jin, Nriagu Jerome, Haack Sheridan. 2000. Carbonate ions and arsenic dissolution by groundwater[J]. Environmental Science & Technology, 34(15): 3094-3100.
Google Scholar
|
Kim Myoung-Jin, Nriagu Jerome, Haack Sheridan. 2002. Arsenic species and chemistry in groundwater of southeast Michigan[J]. Environmental Pollution, 120(2): 379-390.
Google Scholar
|
Kim Seok-Hwi, Kim Kangjoo, Ko Kyung-Seok, Kim Yeongkyoo, Lee Kwang-Sik. 2012. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments[J]. Chemosphere, 87(8): 851-856.
Google Scholar
|
Kobya Mehmet, Gebologlu Ugur, Ulu Feride, Oncel Salim, Demirbas Erhan. 2011. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes[J]. Electrochimica Acta, 56(14): 5060-5070.
Google Scholar
|
Kowalski Krzysztof P. 2014. Advanced arsenic removal technologies review[J]. Chemistry of Advanced Environmental Purification Processes of Water, 285-337.
Google Scholar
|
Kruger Martin C, Bertin Philippe N, Heipieper Hermann J, Florence Arsène-Ploetze. 2013. Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications[J]. Applied Microbiology and Biotechnology, 97(9): 3827-3841.
Google Scholar
|
Lara Frederick, Cornejo Lorena, Yáñez Jorge, Freer Juanita, Mansilla Héctor D. 2007. Solar-light assisted removal of arsenic from natural waters: Effect of iron and citrate concentrations[J]. Journal of Chemical Technology and Biotechnology, 81(7): 1282-1287.
Google Scholar
|
Lata Sneh, Samadder S R. 2016. Removal of arsenic from water using nano adsorbents and challenges: A review[J]. Journal of Environmental Management, 166: 387-406.
Google Scholar
|
Leng Yingxiang, Liu Fei, Wang Wenjuan, Luo Ximing. 2017. Effects of small molecule organic acids on nanometer iron for stabilization of arsenic[J]. Chinese Journal of Environmental Engineering, 11(5): 3195-3203(in Chinese with English abstract).
Google Scholar
|
Li Junxia, Wang Yanxin, Xie Xianjun, Su Chunli. 2012. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China[J]. Journal of Geochemical Exploration, 118: 77-89.
Google Scholar
|
Li Shaolin, Wang Wei, Liang Feipeng, Zhang Weixian. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application[J]. Journal of Hazardous Materials, 322: 163-171.
Google Scholar
|
Li Xiujuan, Liu Chengshuai, Li Fangbai, Li Yongtao, Zhang Lijia, Liu Chuanping, Zhou Yongzhang. 2010. The oxidative transformation of sodium arsenite at the interface of α-MnO2 and water[J]. Journal of Hazardous Materials, 173(1/3): 675-681.
Google Scholar
|
Li Yanli, 2012. Bioremediation of Arsenic Contaminated Water Using Green Microalgae[D]. Guangzhou: South China University of Technology(in Chinese with English abstract).
Google Scholar
|
Li Zongqun, Yang Jichao, Sui Kewen, Yin Na. 2015. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Materials Letters, 160: 412-414.
Google Scholar
|
Liang Jianjun, Zhe Ding, Qin Haoming, Li Jing, Wang Wei, Luo Dongxia, Geng Rongyue, Li Ping, Fan Qiaohui. 2019. Ultra-fast enrichment and reduction of As(V)/Se(VI) on three dimensional graphene oxide sheets-oxidized carbon nanotubes hydrogels[J]. Environmental Pollution, 251: 945-951.
Google Scholar
|
Limmer Matt, Burken Joel. 2016. Phytovolatilization of organic contaminants[J]. Environmental Science & Technology, 50(13): 6632-6643.
Google Scholar
|
Lin Tsair-Fuh, Wu Junkun. 2001. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics[J]. Water Research, 35(8): 2049-2057.
Google Scholar
|
Litter Marta I, Morgada Maria E, Bundschuh Jochen. 2010. Possible treatments for arsenic removal in Latin American waters for human consumption[J]. Environmental Pollution, 158(5): 1105-1118.
Google Scholar
|
Liu Bao, Jian Meipeng, Liu Ruiping, Yao Jianfeng, Zhang Xiwang. 2015. Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481: 358-366.
Google Scholar
|
Ma Wenjing, Li Yan, Zhang Jianfeng. 2018. Groundwater arsenic and Silicate adsorption on TiO2 and the regeneration of TiO2[J]. Environmental Science, 39(3): 1241-1247(in Chinese with English abstract).
Google Scholar
|
Maity Jyoti Prakash, Chen Chien-Yen, Bhattacharya Prosun, Sharma Raju Kumar, Ahmad Arslan, Patnaik Sneha, Bundschuh Jochen. 2021. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal[J]. Journal of Hazardous Materials, 405: 123885.
Google Scholar
|
Meng Xiaoguang, Bang Sunbaek, Korfiatis George P. 2000. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J]. Water Research, 34(4): 1255-1261.
Google Scholar
|
Meyer Sebastian, Glaser Bruno, Quicker Peter. 2011. Technical, economical, and climate-related apects of biochar production technologies: A literature review[J]. Environmental Science & Technology, 45(22): 9473-9483.
Google Scholar
|
Michael C Dodd, Ngoc Duy Vu, Adrian Ammann, Van Chieu Le, Reinhard Kissner, Hung Viet Pham, The Ha Cao, Michael Berg, Urs Von Gunten. 2006. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: Relevance to drinking water treatment[J]. Environmental Science & Technology, 40(10): 3285-3292.
Google Scholar
|
Mólgora Cesar Calderon, Domínguez Alejandra Martín, Avila Mundo Eloy, Drogui Patrick, Buelna Gerardo. 2013. Removal of arsenic from drinking water: A comparative study between electrocoagulation-microfiltration and chemical coagulation-microfiltration processes[J]. Separation and Purification Technology, 118: 645-651.
Google Scholar
|
Mondal Prasenjit, Majumder Chandrajeetbalo, Mohanty Bikash. 2006. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments[J]. Journal of Hazardous Materials, 137(1): 464-479.
Google Scholar
|
Muhammad Ali Inam, Rizwan Khan, Ick Tae Yeom, Abdul Salam Buller, Muhammad Akram, Muhammad Waleed Inam. 2021. Optimization of antimony removal by coagulation-flocculation-sedimentation process using response surface methodology[J]. Processes, 9(117): 117.
Google Scholar
|
Nabi Deedar, Aslam Irfan, Qazi Ishtiaq A. 2009. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal[J]. Journal of Environmental Sciences, 21(3): 402-408.
Google Scholar
|
Namgay Tshewang, Balwant Singh, Pal Singh Bhupinder. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) [J]. Australian Journal of Soil Research, 48(6-7): 638-647.
Google Scholar
|
Nazari Amir Mohammad, Radzinski Rebecca, Ghahreman Ahmad. 2017. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 174: 258-281.
Google Scholar
|
Neppolian Bernaurdshaw, Doronila Augustine, Ashokkumar Muthupandian. 2010. Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent[J]. Water Research, 44(12): 3687-3695.
Google Scholar
|
Nguyen Cuong Manh, Bang Sunbaek, Cho Jaeweon, Kim Kyoung-Woong. 2009. Performance and mechanism of arsenic removal from water by a nanofiltration membrane[J]. Desalination, 245(1): 82-94.
Google Scholar
|
Nidheesh P V, Singh T S Anantha. 2017. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism[J]. Chemosphere, 181: 418-432.
Google Scholar
|
Nordstrom D K. 2002. Public health——Worldwide occurrences of arsenic in ground water[J]. Science, 296(5576): 2143-2145.
Google Scholar
|
Nordstrom D Kirk. 2002. Worldwide occurrences of arsenic in ground water [J].Science, 296(5576): 2143,2145.
Google Scholar
|
Patra Astam K, Dutta Arghya, Bhaumik Asim. 2012. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water[J]. Journal of Hazardous Materials, 201/202: 170-177.
Google Scholar
|
Pettine Maurizio, Campanella Luigi, Millero Frank J. 1999. Arsenite oxidation by H2O2 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 63(18): 2727-2735.
Google Scholar
|
Pierce Matthew L, Moore Carleton B. 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide[J]. Water Research, 16(7): 1247-1253.
Google Scholar
|
Placek Agnieszka, Grobela Anna, Kacprzak Malgorzata. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge[J]. International Journal of Phytoremediation, 18(6): 605-618.
Google Scholar
|
Prosun Bhattacharya, Welch Alan H, Ahmed Kazi Matin, Jacks Gunnar, Naidu Ravi. 2004. Arsenic in groundwater of sedimentary aquifers[J]. Applied Geochemistry, 19(2): 163-167.
Google Scholar
|
Puttamraju Pavan, SenGupta Arup K. 2006. Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: Role of ion exchanger support[J]. Industrial & Engineering Chemistry Research, 45(22): 7737-7742.
Google Scholar
|
Rahman Shahedur, Kim Ki-Hyun, Saha Subbroto Kumar, Swaraz A M, Paul Dipak Kumar. 2014. Review of remediation techniques for arsenic (As) contamination: A novel approach utilizing bio-organisms[J]. Journal of Environmental Management, 134: 175-185.
Google Scholar
|
Rajni Gupta, Jeevan Jyoti Mohindru, Umesh Kumar Garg. 2017. Coagulation-flocculation technologies for arsenic removal——A review[J]. Asian Journal of Research in Chemistry, 10(3): 405-413.
Google Scholar
|
Rathi B Senthil, Senthil Kumar P. 2021. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system[J]. Journal of Hazardous Materials, 418: 126299.
Google Scholar
|
Rezende Moreira Victor, Lebron Yuri Abner Rocha, Santos Lucilaine Valéria De Souza, Coutinho de Paula Eduardo, Amaral Míriam Cristina Santos. 2021. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes[J]. Process Safety and Environmental Protection, 148: 604-623.
Google Scholar
|
Robins R G, Singh Pritam, Das R P. 2005. Coprecipitation of arsenic with Fe(III), Al(III) and mixtures of both in a chloride system[C]//2005 TMS Annual Meeting.
Google Scholar
|
Rowsell Jesse L C, Yaghi Omar M. 2004. Metal-organic frameworks: A new class of porous materials[J]. Microporous and Mesoporous Materials, 73(1): 3-14.
Google Scholar
|
Sarkar Arpan, Paul Biswajit. 2016. The global menace of arsenic and its conventional remediation——A critical review[J]. Chemosphere, 158: 37-49.
Google Scholar
|
Shakoor Muhammad Bilal, Nawaz Rab, Hussain Fida, Raza Maimoona, Ali Shafaqat, Rizwan Muhammad, Oh Sang-Eun, Ahmad Sajjad. 2017. Human health implications, risk assessment and remediation of As-contaminated water: A critical review[J]. Science of the Total Environment, 601/602: 756-769.
Google Scholar
|
Shakoor Muhammad Bilal, Niazi Nabeel Khan, Bibi Irshad, Murtaza Ghulam, Kunhikrishnan Anitha, Seshadri Balaji, Shahid Muhammad, Shafaqat Ali, Nanthi S Bolan, Yong Sik Ok, Abid Muhammad, Ali Fawad. 2016. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents[J]. Critical Reviews in Environmental Science & Technology, 46(5): 467-499.
Google Scholar
|
Sharma Virender K, Dutta Paritam K, Ray Ajay K. 2007. Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH[J]. Journal of Environmental Science and Health, 42(7): 997-1004.
Google Scholar
|
Sharma Virender K, McDonald Thomas J, Kim Hyunook, Garg Vijayendra K. 2015. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification[J]. Advances in Colloid and Interface Science, 225: 229-240.
Google Scholar
|
Shih Mingcheng. 2005. An overview of arsenic removal by pressure-drivenmembrane processes[J]. Desalination, 172(1): 85-97.
Google Scholar
|
Singh Rachana, Singh Samiksha, Parihar Parul, Singh Vijay Pratap, Prasad Sheo Mohan. 2015. Arsenic contamination, consequences and remediation techniques: A review[J]. Ecotoxicology and Environmental Safety, 112: 247-270.
Google Scholar
|
Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 17(5): 517-568.
Google Scholar
|
Song Peipei, Yang Zhaohui, Zeng Guangming, Yang Xia, Xu Haiyin, Wang Like, Xu Rui, Xiong Weiping, Ahmad Kito. 2017. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review[J]. Chemical Engineering Journal, 317: 707-725.
Google Scholar
|
Song Shaoxian, López-Valdivieso Alejandro, Hernandez-Campos D J, Peng Changsheng, Monroy-Fernández Marcos Gustavo, Razo-Soto Israel. 2006. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J]. Water Research, 40(2): 364-372.
Google Scholar
|
Srivastava Pankaj Kumar, Vaish Aradhana, Dwivedi Sanjay, Chakrabarty Debasis, Singh Nandita, Tripathi Rudra Deo. 2011. Biological removal of arsenic pollution by soil fungi[J]. Science of the Total Environment, 409(12): 2430-2442.
Google Scholar
|
Sumio Iijima. 1991. Helical microtubules of graphitic carbon[J]. Nature, 354(6348): 56-58.
Google Scholar
|
Swaminathan Jaichander, Tow Emily W, Stover Richard L, Lienhard John H. 2019. Practical aspects of batch RO design for energy-efficient seawater desalination[J]. Desalination, 470: 114097.
Google Scholar
|
Sylvain Bart, Mikael Motelica-Heino, Florie Miard, Emmanuel Joussein, Marilyne Soubrand, Sylvain Bourgerie, Domenico Morabito. 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols[J]. Catena, 136: 44-52.
Google Scholar
|
Vadahanambi Sridhar, Lee Sang-Heon, Kim Won-Jong, Oh Il-Kwon. 2013. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures[J]. Environmental Science & Technology, 47(18): 10510-10517.
Google Scholar
|
Van Vinh N, Zafar M, Behera S K, Park H S. 2015. Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: Equilibrium, kinetics, and thermodynamics studies[J]. International Journal of Environmental Science & Technology, 12(4): 1283-1294.
Google Scholar
|
Velizarov Svetlozar, Crespo João G, Reis Maria A. 2004. Removal of inorganic anions from drinking water supplies by membrane bio/processes[J]. Reviews in Environmental Science and Bio/Technology, 3(4): 361-380.
Google Scholar
|
Vetterlein Doris, Wesenberg Dirk, Nathan Petra, Bräutigam Anja, Schierhorn Angelika, Mattusch Jürgen, Jahn Reinhold. 2009. Pteris vittata-Revisited: Uptake of As and its speciation, impact of P, role of phytochelatins and S[J]. Environmental Pollution, 157(11): 3016-3024.
Google Scholar
|
Vithanage Meththika, Herath Indika, Joseph Stephen, Bundschuh Jochen, Bolan Nanthi, Yong Sik Ok, Kirkham M B, Rinklebe Jörg. 2017. Interaction of arsenic with biochar in soil and water: A critical review[J]. Carbon, 113: 219-230.
Google Scholar
|
Wang Dengke, Huang Renkun, Liu Wenjun, Sun Dengrong, Li Zhaohui. 2014. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catalysis,4(12): 4254-4260.
Google Scholar
|
Wang Guoquan, Huang Yuezhen, Gang Jingmin, Wang Shizhen, Xiao Biyu, Yao Hua, Hu Yu, Gu Yulan, Zhang Chen, Liu Kaitai. 2000. Endemic arsenism, fluorosis and arsenic-fluoride poisoning caused by drinking water in Kuitun, Xinjiang[J]. Chinese Medical Journal, 113(6): 524.
Google Scholar
|
Wang Jianping, Wang Shengling, Lin Qin, Zhang Ling, Huang Daphne, Ng Jack C. 2009. Association of arsenic and kidney dysfunction in people with diabetes and validation of its effects in rats[J]. Environment International, 35(3): 507-511.
Google Scholar
|
Wang Ning, Wang Nannan, Zhang Ru, Zhao Qian, Wang Hongbo. 2020. Removal of aqueous As(III) Sb(III) by potassium ferrate (K2FeO4): The function of oxidation and flocculation[J]. Science of the Total Environment, 726: 138541.
Google Scholar
|
Wang Suiling, Mulligan Catherine N. 2006. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution[J]. Science of the Total Environment, 366(2/3): 701-721.
Google Scholar
|
Wang Yuru, Tsang Daniel C W. 2013. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents[J]. Journal of Environmental Sciences, 25(11): 2291-2298.
Google Scholar
|
Wang Zhengfang, Shi Mo, Li Jihua, Zheng Zheng. 2014. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon[J]. Journal of Environmental Sciences, 26(3): 519-528.
Google Scholar
|
Waypa John J, Elimelech Menachem, Hering Janet G. 1997. Arsenic removal by RO and NF membranes[J]. American Water Works Association, 89(10): 102-114.
Google Scholar
|
Wen Dongguang, Zhang Fucun, An Yonghui. 2020. Support service of geological technology in lifting residents of endemic disease area out of poverty[J]. China Geology, 3, 656-660.
Google Scholar
|
Wenten I G, Khoiruddin K. 2016. Reverse osmosis applications: Prospect and challenges[J]. Desalination,391: 112-125.
Google Scholar
|
WHO/UNIEF. 2014. Progress on Drinking-water and Sanitation-2014 Update[R]. World Health Organization, 1, 1.
Google Scholar
|
Wu Guiping, Lin Xiaoyu, Jiang Shi, Chui Longze. 2019. Adsorption performance of As(Ⅲ) by metal-organic frameworks of MIL-101 (Fe) [J]. Journal of South-Central University for Nationalities (Natural Science Edition), 38(1): 27-33(in Chinese with English abstract).
Google Scholar
|
Xia Xuefen, Hua Yilong, Hang Xiaoyue, Ling Lan, Zhang Weixian. 2017. Removal of arsenic and selenium with nanoscale zero-valent iron (nZVI) [J]. Acta Chimica Sinica, 75(6): 594-601(in Chinese with English abstract).
Google Scholar
|
Xia Xuefen. 2020. Effect of coexisting anions on the removal of arsenic and selenium with nanoscale zero-valent iron (nZVI) [J]. Contemporary Chemical Industry, 49(8): 1613-1617(in Chinese with English abstract).
Google Scholar
|
Xiao Xin, Chen Baoliang. 2017. A direct observation of the fine aromatic clusters and molecular structures of biochars[J]. Environmental Science & Technology, 51(10): 5473-5482.
Google Scholar
|
Xiao Yabing, Qian Shahua, Huang Ganquan, Zhong Jiasheng, Wang Haoyun. 2003. Adsorption properties of nanometer-size TiO2 for As(Ⅲ) and As(Ⅴ) [J]. Journal of Analytical Science, 19(2): 172-174(in Chinese with English abstract).
Google Scholar
|
Xiong Yangyang, Li Jianqiang, Gong Lele, Feng Xuefeng, Meng Lina, Zhang Le, Meng Panpan, Luo Mingbiao, Luo Feng. 2017. Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution[J]. Journal of Solid State Chemistry, 246: 16-22.
Google Scholar
|
Xu Naizheng, Gong Jianshi, Tan Mengjiao, Ye Yonghong, Zhou Kaie, Zhu Chunfang, Shu Longcang, Meng Dan. 2021. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China [J]. Geology in China, 48(5): 1418-1428(in Chinese with English abstract).
Google Scholar
|
Yan Zichun, Wu Dabing, Wang Zhengrong. 2021. Progress of preparation and application of nanoscale zero-valent iron[J]. Applied Chemical Industry, 50(3): 789-792(in Chinese with English abstract).
Google Scholar
|
Yin Jina, Josué Medellín-Azuara, Alvar Escriva-Bou, Zhu Liu. 2021. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change[J]. Science of the Total Environment, 769: 144715.
Google Scholar
|
Yoon Jaekyung, Amy Gary, Chung Jinwook, Sohn Jinsik, Yoon Yeomin. 2009. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes[J]. Chemosphere, 77(2): 228-235.
Google Scholar
|
Yoshizuka Kazuharu, Nishihama Syouhei, Sato Hideki. 2010. Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite[J]. Environmental Geochemistry and Health, 32(4): 297-302.
Google Scholar
|
Yunho Lee, Ik-hwan Um, Jeyong Yoon. 2003. Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation[J]. Environmental Science & Technology, 37(24): 5750-5756.
Google Scholar
|
Zama Eric F, Reid Brian J, Sun Guoxin, Yuan Haiyan, Li Xiaoxing, Zhu Yongguan. 2018. Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in Spinach (Spinacia oleracean) and improvement in the plant growth[J]. Journal of Cleaner Production, 189: 386-395.
Google Scholar
|
Zhang Ping, Chen Wei, Li Xiaochen, Gao Chen, Gao Yan. 2017. Application of modified ion-exchange resin in arsenic removal [J]. China Science & Technology Panorama Magazine, (10): 10-11(in Chinese).
Google Scholar
|
Zhao Shuaifei, Zou Linda, Tang Chuyang Y, Mulcahy Dennis. 2012. Recent developments in forward osmosis: Opportunities and challenges[J]. Journal of Membrane Science, 396: 1-21.
Google Scholar
|
Zheng Yan, Stute Martin, Geen Alexander van, Gavrieli Ittai, Dhar Ratan Kumar, Simpson H James, Schlosser Peter, Ahmed Kazi Matin Uddin. 2004. Redox control of arsenic mobilization in Bangladesh groundwater[J]. Applied Geochemistry, 19(2): 201-214.
Google Scholar
|
Zhou Xun. 2017. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China[J]. Journal of Groundwater Science and Engineering, 4:343-353.
Google Scholar
|
Zhu Meng, Chen Nannan, Yang Ruyi, Zhou Shoubiao, Zhang Juqin, Zhang Mengyun. 2020. Progress in researches on remediation of phenyl arsonic acid compounds in soil-water environment[J]. Ecology and Environmental Sciences, 29(7): 1475-1486(in Chinese with English abstract).
Google Scholar
|
附中文参考文献
Google Scholar
|
海傲, 李露露, 步延鹏, 马诗院, 张成琳, 曾瑞, 袁近秋, 张云庚, 陈丹云. 2020. 纳米氧化铝的合成方法及其对As的吸附研究进展[J]. 功能材料, 51(8): 30-38.
Google Scholar
|
韩双宝,李甫成,王赛,李海学,袁磊,刘景涛,申豪勇,张学庆,李长青,吴玺,马涛,魏世博,赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J].中国地质, 48(4): 1001-1019.
Google Scholar
|
胡天觉, 曾光明, 陈维平, 李小红. 1998. 选择性高分子离子交换树脂处理含砷废水[J]. 湖南大学学报(自然科学版), 25(6): 75-81.
Google Scholar
|
姜舟.2016.腾冲地热区砷的环境生物地球化学研究[D]. 中国地质大学(武汉).
Google Scholar
|
冷迎祥, 刘菲, 王文娟, 罗锡明. 2017. 小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 11(5): 3195-3203.
Google Scholar
|
李妍丽. 2012. 微型绿藻对砷污染水体的生物修复研究[D].广州: 华南理工大学.
Google Scholar
|
马文静, 阎莉, 张建锋. 2018. 二氧化钛对地下水中砷硅的吸附及再生回用[J]. 环境科学, 39(3): 1241-1247.
Google Scholar
|
吴桂萍, 林晓宇, 蒋实, 崔龙哲. 2019. 金属有机骨架MIL-101(Fe)吸附As(Ⅲ)的性能[J]. 中南民族大学学报(自然科学版), 38(1): 27-33.
Google Scholar
|
夏雪芬, 滑熠龙, 黄潇月, 凌岚, 张伟贤. 2017. 纳米零价铁对水中砷和硒去除的比较研究[J]. 化学学报, 75(6): 594-601.
Google Scholar
|
夏雪芬. 2020. 共存阴离子对纳米零价铁去除水中砷和硒的影响[J]. 当代化工, 49(8): 1613-1617.
Google Scholar
|
肖亚兵, 钱沙华, 黄淦泉, 钟家柽, 王昊云. 2003. 纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究[J]. 分析科学学报, 19(2): 172-174.
Google Scholar
|
许乃政, 龚建师, 檀梦皎, 叶永红, 周锴锷, 朱春芳, 束龙仓. 2021. 淮河流域高砷地下水的形成演化过程及其环境健康风险[J].中国地质, 48(5): 1418-1428.
Google Scholar
|
严子春, 吴大冰, 王峥嵘. 2021. 纳米零价铁的制备及应用研究进展[J]. 应用化工, 50(3): 789-792.
Google Scholar
|
张萍, 陈卫, 李晓晨, 高雁. 2017. 改性离子交换树脂除砷方面的应用[J]. 中国科技纵横,(10): 10-11.
Google Scholar
|
朱濛, 程楠楠, 杨如意, 周守标, 张菊琴, 张梦云. 2020. 土壤-水环境中苯砷酸类化合物修复研究进展[J]. 生态环境学报, 29(7): 1475-1486.
Google Scholar
|