China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2025 Vol. 37, No. 1
Article Contents

LI Yubin, WANG Zongming, ZHAO Chuanpeng, JIA Mingming, REN Chunying, MAO Dehua, YU Hao. 2025. Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China. Remote Sensing for Natural Resources, 37(1): 195-203. doi: 10.6046/zrzyyg.2023293
Citation: LI Yubin, WANG Zongming, ZHAO Chuanpeng, JIA Mingming, REN Chunying, MAO Dehua, YU Hao. 2025. Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China. Remote Sensing for Natural Resources, 37(1): 195-203. doi: 10.6046/zrzyyg.2023293

Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China

More Information
  • Corresponding author: ZHAO Chuanpeng  
  • The Liaohe estuary of China boasts the largest red beach landscape in the world. Monitoring the spatiotemporal dynamics of Suaeda salsa in this region is of great significance for revealing the performance of conservation measures such as returning aquaculture to wetlands. Currently, satellite remote sensing technology has been widely applied to the mapping and identification of coastal vegetation including Suaeda salsa. However, existing classification methods rely on black-box models, which are difficult to interpret, while overlooking exploring identification mechanisms. This has hindered the improvement and development of related methods. Fortunately, the advancement in explainable artificial intelligence (XAI) has provided new directions for analyzing the black-box models. Considering that the decision rules in random forests are interpretable, this study developed a new method to extract the optimal decision rules from trained random forest models. Using this method, this study ultimately reconstructed the optimal decision rules used to identify Suaeda salsa, i.e., B3/B4< 0.90 & B5/B3≥1.46, with an overall data accuracy exceeding 90%. Using annual Sentinel-2 images from 2017 to 2022 as a data source, the study successfully extracted the annual dynamics of Suaeda salsa in the Liaohe Estuary. Accordingly, by combining the centroid migration method, this study analyzed the spatiotemporal changes in the Suaeda salsa following the implementation of returning aquaculture to wetlands, revealing the current status that the Suaeda salsa in this region is undergoing rapid restoration.
  • 加载中
  • [1] 温广玥.1997-2018年辽河口翅碱蓬生物群落时空变化特征研究[D].北京:中国地质大学(北京), 2020.Wen G Y.Temporal and spatial variation of Suaeda salsa community in Liaohe River from 1997 to 2018[D].Beijing:China University of Geosciences, 2020.

    Google Scholar

    [2] Gu J, Jin R, Chen G, et al.Areal extent, species composition, and spatial distribution of coastal saltmarshes in China[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:7085-7094.

    Google Scholar

    [3] 王旖旎, 康亚茹, 陈旭, 等.辽河口潮滩湿地景观格局空间演变的动态分析[J].大连海洋大学学报, 2021, 36(6):1009-1017.

    Google Scholar

    Wang Y N, Kang Y R, Chen X, et al.Dynamic analysis of spatial evolution of landscape pattern in the tidal flat wetlands at Liao River Estuary[J].Journal of Dalian Ocean University, 2021, 36(6):1009-1017.

    Google Scholar

    [4] Cao C, Su F, Song F, et al.Distribution and disturbance dynamics of habitats suitable for Suaeda salsa[J].Ecological Indicators, 2022, 140:108984.

    Google Scholar

    [5] 邵璐, 姜华.辽宁碱蓬根际土壤真菌多样性的季节变化及其耐盐性[J].生态学报, 2016, 36(4):1050-1057.

    Google Scholar

    Shao L, Jiang H.Effect of season and variation in salinity on the rhizosphere fungal diversity of Suaeda liaotungensis[J].Acta Ecologica Sinica, 2016, 36(4):1050-1057.

    Google Scholar

    [6] 余雪洋, 叶思源, Yuknis N, 等.辽河三角洲翅碱蓬湿地不同植被覆盖度下的土壤对碳的扣留[J].中国地质, 2014, 41(2):648-657.

    Google Scholar

    Yu X Y, Ye S Y, Yuknis N, et al.Carbon sequestration along vegetation coverage gradient in the Suaeda salsa marsh from the Liaohe Delta[J].Geology in China, 2014, 41(2):648-657.

    Google Scholar

    [7] 何爽, 张森, 田家, 等.结合多模态数据的滨海湿地碱蓬叶面积指数无人机高光谱反演[J].遥感学报, 2023, 27(6):1441-1453.

    Google Scholar

    He S, Zhang S, Tian J, et al.UAV hyperspectral inversion of Suaeda Salsa leaf area index in coastal wetlands combined with multimodal data[J].National Remote Sensing Bulletin, 2023, 27(6):1441-1453.

    Google Scholar

    [8] 张树文, 颜凤芹, 于灵雪, 等.湿地遥感研究进展[J].地理科学, 2013, 33(11):1406-1412.

    Google Scholar

    Zhang S W, Yan F Q, Yu L X, et al.Application of remote sensing technology to wetland research[J].Scientia Geographica Sinica, 2013, 33(11):1406-1412.

    Google Scholar

    [9] 彭剑伟.1986-2018年辽河口滨海湿地连续变化时空格局及驱动力分析[D].长沙:中南林业科技大学, 2021.Peng J W.Spatial-temporal pattern and driving forces of continuous change of coastal wetlands in Liaohe Estuary from 1986 to 2018[D].Changsha:Central South University of Forestry and Technology, 2021.

    Google Scholar

    [10] Song Z, Sun Y, Chen P, et al.Assessing the ecosystem health of coastal wetland vegetation (Suaeda salsa) using the pressure state response model, a case of the Liao River Estuary in China[J].International Journal of Environmental Research and Public Health, 2022, 19(1):546.

    Google Scholar

    [11] 王文硕.典型盐生植被群落演替退化遥感监测研究[D].大连:大连海洋大学, 2022.Wang W S.Remote sensing monitoring research on the succession and degradation of typical saline vegetation community[D].Dalian:Dalian Ocean University, 2022.

    Google Scholar

    [12] 许晨, 卢霞, 桑瑜, 等.基于空谱融合与AlexNet算法的滨海湿地植被分类研究[J].海洋科学, 2023, 47(7):1-11.

    Google Scholar

    Xu C, Lu X, Sang Y, et al.Vegetation classification combining spatial-spectral feature fusion based on remote sensing and AlexNet algorithm in a coastal wetland[J].Marine Sciences, 2023, 47(7):1-11.

    Google Scholar

    [13] Vilone G, Longo L.Notions of explainability and evaluation approaches for explainable artificial intelligence[J].Information Fusion, 2021, 76:89-106.

    Google Scholar

    [14] Chander A, Srinivasan R.Evaluating explanations by cognitive value[J].Proceedings of the Machine Learning and Knowledge Extraction:Second IFIP TC 5, TC 8/WG 84, 89, TC 12/WG 129 International Cross-Domain Conference, CD-MAKE 2018, Hamburg, Germany, August 27-30, 2018, Proceedings 2, F, 2018 [C].Springer.

    Google Scholar

    [15] Tintarev N, Masthoff J.Explaining recommendations:Design and evaluation[M]//Ricci F, Rokach L, Shapira B, eds.Recommender Systems Handbook.Boston, MA:Springer US, 2015:353-382.

    Google Scholar

    [16] 李营, 陈云浩, 陈辉, 等.GF-1 WFV影像的翅碱蓬植被指数构建[J].武汉大学学报(信息科学版), 2019, 44(12):1823-1831.

    Google Scholar

    Li Y, Chen Y H, Chen H, et al.Construction of Suaeda salsa vegetation index based on GF-1 WFV images[J].Geomatics and Information Science of Wuhan University, 2019, 44(12):1823-1831.

    Google Scholar

    [17] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104.

    Google Scholar

    [18] Zhao C, Jia M, Wang Z, et al.Toward a better understanding of coastal salt marsh mapping:A case from China using dual-temporal images[J].Remote Sensing of Environment, 2023, 295:113664.

    Google Scholar

    [19] Boruah A N, Biswas S K, Bandyopadhyay S.Transparent rule generator random forest (TRG-RF):An interpretable random forest[J].Evolving Systems, 2023, 14(1):69-83.

    Google Scholar

    [20] Hou W, Zhang R, Xi Y, et al.The role of waterlogging stress on the distribution of salt marsh plants in the Liao River Estuary wetland[J].Global Ecology and Conservation, 2020, 23:e01100.

    Google Scholar

    [21] Zhao C, Jia M, Wang Z, et al.Toward a better understanding of coastal salt marsh mapping:A case from China using dual-temporal images[J].Remote Sensing of Environment, 2023, 295:113664.

    Google Scholar

    [22] 程丽娜, 钟才荣, 李晓燕, 等.Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J].遥感学报, 2022, 26(2):348-357.

    Google Scholar

    Cheng L N, Zhong C R, Li X Y, et al.Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J].National Remote Sensing Bulletin, 2022, 26(2):348-357.

    Google Scholar

    [23] Maheshwari D, Garcia-Zapirain B, Sierra-Soso D.Machine learning applied to diabetes dataset using Quantum versus Classical computation[C]//2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).December 9-11, 2020, Louisville, KY, USA.IEEE, 2020:1-6.

    Google Scholar

    [24] 张猛, 曾永年.长株潭城市群湿地景观时空动态变化及驱动力分析[J].农业工程学报, 2018, 34(1):241-249.

    Google Scholar

    Zhang M, Zeng Y N.Temporal and spatial dynamic changes and driving forces analysis of wetland landscape of Chang-Zhu-Tan urban agglomeration[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1):241-249.

    Google Scholar

    [25] 黄子强.鸻鹬类迁徙停歇期对翅碱蓬和潮间带湿地的栖息地利用[D].沈阳:辽宁大学, 2019.Huang Z Q.The habitate use of migrant shorebirds in Suaeda salsa salt marshes and the intertidal flats in Liaohe River delta[D].Shenyang:Liaoning University, 2019.

    Google Scholar

    [26] Kan Z, Chen B, Yu W, et al.Forecasting land-cover change effects on waterbirds in Xiamen Bay, China:Determining prospective species winners and losers[J].Marine Environmental Research, 2023, 188:106003.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(338) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint