|
[1]
|
De Marzo T, Pflugmacher D, Baumann M, et al.Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series[J].International Journal of Applied Earth Observation and Geoinformation, 2021, 98:102310.
Google Scholar
|
|
[2]
|
Chen Y, Luo G, Maisupova B, et al.Carbon budget from forest land use and management in Central Asia during 1961-2010[J].Agricultural and Forest Meteorology, 2016, 221:131-141.
Google Scholar
|
|
[3]
|
He L H, Zhou Y K, Yang Q.Characteristics of spatial-temporal changes in vegetation coverage in Yan’an region during 2000-2013[J].Journal of Arid Land Resources and Environment, 2015, 29(11):174-179.
Google Scholar
|
|
[4]
|
Almeida D R A, Stark S C, Chazdon R, et al.The effectiveness of LiDAR remote sensing for monitoring forest cover attributes and landscape restoration[J].Forest Ecology and Management, 2019, 438:34-43.
Google Scholar
|
|
[5]
|
Li M, Zuo S, Su Y, et al.An approach integrating multi-source data with LandTrendr algorithm for refining forest recovery detection[J].Remote Sensing, 2023, 15(10):2667.
Google Scholar
|
|
[6]
|
王燕, 朱婷茹, 何立恒.森林资源遥感调查研究进展[J].现代测绘, 2022, 45(6):1-6, 60.
Google Scholar
Wang Y, Zhu T R, He L H.Research progress on forest resources inventory based on remote sensing[J].Modern Surveying and Mapping, 2022, 45(6):1-6, 60.
Google Scholar
|
|
[7]
|
王平.南通市生态环境遥感监测及其动态变化研究[J].环境监控与预警, 2012, 4(6):42-45.
Google Scholar
Wang P.Study on dynamic changes of remote sensing and application to ecological environment monitoring in Nantong[J].Environmental Monitoring and Forewarning, 2012, 4(6):42-45.
Google Scholar
|
|
[8]
|
杨强, 王婷婷, 陈昊, 等.基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征[J].农业工程学报, 2015, 31(22):191-198, 315.
Google Scholar
Yang Q, Wang T T, Chen H, et al.Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data[J].Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22):191-198, 315.
Google Scholar
|
|
[9]
|
钟莉, 陈芸芝, 汪小钦.基于Landsat时序数据的森林干扰监测[J].林业科学, 2020, 56(5):80-88.
Google Scholar
Zhong L, Chen Y Z, Wang X Q.Forest disturbance monitoring based on time series of landsat data[J].Scientia Silvae Sinicae, 2020, 56(5):80-88.
Google Scholar
|
|
[10]
|
沈文娟, 李明诗, 黄成全.长时间序列多源遥感数据的森林干扰监测算法研究进展[J].遥感学报, 2018, 22(6):1005-1022.
Google Scholar
Shen W J, Li M S, Huang C Q.Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J].Journal of Remote Sensing, 2018, 22(6):1005-1022.
Google Scholar
|
|
[11]
|
Cohen W B, Yang Z, Kennedy R.Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync-Tools for calibration and validation[J].Remote Sensing of Environment, 2010, 114(12):2911-2924.
Google Scholar
|
|
[12]
|
Verbesselt J, Zeileis A, Herold M.Near real-time disturbance detection using satellite image time series[J].Remote Sensing of Environment, 2012, 123:98-108.
Google Scholar
|
|
[13]
|
Zhu Z, Woodcock C E.Continuous change detection and classification of land cover using all available Landsat data[J].Remote Sensing of Environment, 2014, 144:152-171.
Google Scholar
|
|
[14]
|
秦乐, 何鹏, 马玉忠, 等.基于时空谱特征的遥感影像时间序列变化检测[J].自然资源遥感, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.
Google Scholar
Qin L, He P, Ma Y Z, et al.Change detection of satellite time series images based on spatial-temporal-spectral features[J].Remote Sensing for Natural Resources, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.
Google Scholar
|
|
[15]
|
Huang C, Goward S N, Masek J G, et al.An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J].Remote Sensing of Environment, 2010, 114(1):183-198.
Google Scholar
|
|
[16]
|
苏文瑞, 田佳, 杨泽康, 等.基于GEE和LandTrendr的宁夏“三山” 森林干扰监测[J].中国水土保持科学(中英文), 2022, 20(6):41-49.
Google Scholar
Su W R, Tian J, Yang Z K, et al.Monitoring of forest disturbance in “Three Mountains” of Ningxia based on GEE and LandTrendr[J].Science of Soil and Water Conservation, 2022, 20(6):41-49.
Google Scholar
|
|
[17]
|
DeVries B, Verbesselt J, Kooistra L, et al.Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series[J].Remote Sensing of Environment, 2015, 161:107-121.
Google Scholar
|
|
[18]
|
Mugiraneza T, Nascetti A, Ban Y.Continuous monitoring of urban land cover change trajectories with landsat time series and LandTrendr-Google Earth Engine cloud computing[J].Remote Sensing, 2020, 12(18):2883.
Google Scholar
|
|
[19]
|
Kennedy R, Yang Z, Gorelick N, et al.Implementation of the LandTrendr algorithm on Google Earth Engine[J].Remote Sensing, 2018, 10(5):691.
Google Scholar
|
|
[20]
|
官王飞, 徐建恩, 叶珊, 等.丽水市“十三五” 期间林木采伐现状分析[J].福建林业科技, 2022, 49(3):111-115, 124.
Google Scholar
Guan W F, Xu J E, Ye S, et al.Current situation analysis of forest cutting in Lishui City during the 13th Five-Year Plan[J].Journal of Fujian Forestry Science and Technology, 2022, 49(3):111-115, 124.
Google Scholar
|
|
[21]
|
Shen J, Chen G, Hua J, et al.Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and machine-learning method[J].Remote Sensing, 2022, 14(13):3238.
Google Scholar
|
|
[22]
|
王塞, 王思诗, 樊风雷.基于时间序列分割算法的雅鲁藏布江流域NDVI(1985-2018)变化模式研究[J].生态学报, 2020, 40(19):6863-6871.
Google Scholar
Wang S, Wang S S, Fan F L.Change patterns of NDVI (1985-2018) in the Yarlung Zangbo River basin of China based on time series segmentation algorithm[J].Acta Ecologica Sinica, 2020, 40(19):6863-6871.
Google Scholar
|
|
[23]
|
于森, 贾明明, 陈高, 等.基于LandTrendr算法海南东寨港红树林扰动研究[J].自然资源遥感, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.
Google Scholar
Yu S, Jia M M, Chen G, et al.A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J].Remote Sensing for Natural Resources, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.
Google Scholar
|
|
[24]
|
Qiu D, Liang Y, Shang R, et al.Improving LandTrendr forest disturbance mapping in China using multi-season observations and multispectral indices[J].Remote Sensing, 2023, 15(9):2381.
Google Scholar
|
|
[25]
|
杨辰, 沈润平.森林扰动遥感监测研究进展[J].国土资源遥感, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.
Google Scholar
Yang C, Shen R P.Progress in the study of forest disturbance by remote sensing[J].Remote Sensing for Land and Resources, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.
Google Scholar
|
|
[26]
|
Kennedy R E, Yang Z, Cohen W B.Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J].Remote Sensing of Environment, 2010, 114(12):2897-2910.
Google Scholar
|
|
[27]
|
殷崎栋, 柳彩霞, 田野.基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究--以陕西柴松和太白山保护区为例[J].生态学报, 2020, 40(20):7343-7352.
Google Scholar
Yin Q D, Liu C X, Tian Y.Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and LandTrendr algorithm:The case of Chaisong and Taibaishan Natural Reserves in Shaanxi, China[J].Acta Ecologica Sinica, 2020, 40(20):7343-7352.
Google Scholar
|
|
[28]
|
陈海喜, 钟九生, 兰安军, 等.基于地形地貌因子的贵州省NDVI时空变化分析[J].贵州科学, 2019, 37(2):36-43.
Google Scholar
Chen H X, Zhong J S, Lan A J, et al.Analysis of temporal and spatial variation of NDVI in Guizhou Province based on landform factors[J].Guizhou Science, 2019, 37(2):36-43.
Google Scholar
|
|
[29]
|
维基百科编者.丽水市[G/OL].维基百科, 2024(20240201)[2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82& o|did=80740233.
Google Scholar
Wikipedia editor.Lishui City [G/OL].Wikipedia, 2024 (20240201) [2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82& o|did=80740233.
Google Scholar
|
|
[30]
|
尹雄, 陈帮乾, 古晓威, 等.基于GEE平台LandTrendr算法的海南岛森林扰动快速监测方法及分析[J].地球信息科学学报, 2023, 25(10):2093-2106.
Google Scholar
Yin X, Chen B Q, Gu X W, et al.Rapid monitoring of tropical forest disturbance in Hainan Island based on GEE platform and LandTrendr algorithm[J].Journal of Geo-Information Science, 2023, 25(10):2093-2106.
Google Scholar
|