China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2025 Vol. 37, No. 1
Article Contents

CHEN Yuanyuan, YAN Shuoting, YAN Jin, ZHENG Siqi, WANG Hao, ZHU Jie. 2025. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the Land Trendr algorithm. Remote Sensing for Natural Resources, 37(1): 179-187. doi: 10.6046/zrzyyg.2023285
Citation: CHEN Yuanyuan, YAN Shuoting, YAN Jin, ZHENG Siqi, WANG Hao, ZHU Jie. 2025. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the Land Trendr algorithm. Remote Sensing for Natural Resources, 37(1): 179-187. doi: 10.6046/zrzyyg.2023285

Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the Land Trendr algorithm

  • The rapid and accurate acquisition of forest disturbances using advanced technological methods is of great significance for maintaining forest ecological security. In this study, all Landsat images of Lishui City, China from June to August from 1992 to 2022 were acquired. Based on the LandTrendr algorithm on the Google Earth Engine (GEE) platform, this study analyzed the characteristics of forest disturbances in the city. A spatiotemporal analysis of forest disturbances across various counties and cities within Lishui was conducted, and the influence patterns of natural factors including slope, elevation, and precipitation on forest disturbances were also explored. The results indicate that vegetation disturbances in Lishui City generally decreased over the 30 years. Spatially, the most severe forest disturbances occurred in Longquan City and Suichang County located in northwestern Lishui City. Temporally, 2008 witnessed the most severe forest disturbances. In addition, areas with gentle slopes and high elevations, as well as years with reduced precipitation, were more sensitive to forest disturbance over the 30 years. This study will provide a scientific basis and reference for the preservation and management of forest resources in Lishui City.
  • 加载中
  • [1] De Marzo T, Pflugmacher D, Baumann M, et al.Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series[J].International Journal of Applied Earth Observation and Geoinformation, 2021, 98:102310.

    Google Scholar

    [2] Chen Y, Luo G, Maisupova B, et al.Carbon budget from forest land use and management in Central Asia during 1961-2010[J].Agricultural and Forest Meteorology, 2016, 221:131-141.

    Google Scholar

    [3] He L H, Zhou Y K, Yang Q.Characteristics of spatial-temporal changes in vegetation coverage in Yan’an region during 2000-2013[J].Journal of Arid Land Resources and Environment, 2015, 29(11):174-179.

    Google Scholar

    [4] Almeida D R A, Stark S C, Chazdon R, et al.The effectiveness of LiDAR remote sensing for monitoring forest cover attributes and landscape restoration[J].Forest Ecology and Management, 2019, 438:34-43.

    Google Scholar

    [5] Li M, Zuo S, Su Y, et al.An approach integrating multi-source data with LandTrendr algorithm for refining forest recovery detection[J].Remote Sensing, 2023, 15(10):2667.

    Google Scholar

    [6] 王燕, 朱婷茹, 何立恒.森林资源遥感调查研究进展[J].现代测绘, 2022, 45(6):1-6, 60.

    Google Scholar

    Wang Y, Zhu T R, He L H.Research progress on forest resources inventory based on remote sensing[J].Modern Surveying and Mapping, 2022, 45(6):1-6, 60.

    Google Scholar

    [7] 王平.南通市生态环境遥感监测及其动态变化研究[J].环境监控与预警, 2012, 4(6):42-45.

    Google Scholar

    Wang P.Study on dynamic changes of remote sensing and application to ecological environment monitoring in Nantong[J].Environmental Monitoring and Forewarning, 2012, 4(6):42-45.

    Google Scholar

    [8] 杨强, 王婷婷, 陈昊, 等.基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征[J].农业工程学报, 2015, 31(22):191-198, 315.

    Google Scholar

    Yang Q, Wang T T, Chen H, et al.Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data[J].Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22):191-198, 315.

    Google Scholar

    [9] 钟莉, 陈芸芝, 汪小钦.基于Landsat时序数据的森林干扰监测[J].林业科学, 2020, 56(5):80-88.

    Google Scholar

    Zhong L, Chen Y Z, Wang X Q.Forest disturbance monitoring based on time series of landsat data[J].Scientia Silvae Sinicae, 2020, 56(5):80-88.

    Google Scholar

    [10] 沈文娟, 李明诗, 黄成全.长时间序列多源遥感数据的森林干扰监测算法研究进展[J].遥感学报, 2018, 22(6):1005-1022.

    Google Scholar

    Shen W J, Li M S, Huang C Q.Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J].Journal of Remote Sensing, 2018, 22(6):1005-1022.

    Google Scholar

    [11] Cohen W B, Yang Z, Kennedy R.Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync-Tools for calibration and validation[J].Remote Sensing of Environment, 2010, 114(12):2911-2924.

    Google Scholar

    [12] Verbesselt J, Zeileis A, Herold M.Near real-time disturbance detection using satellite image time series[J].Remote Sensing of Environment, 2012, 123:98-108.

    Google Scholar

    [13] Zhu Z, Woodcock C E.Continuous change detection and classification of land cover using all available Landsat data[J].Remote Sensing of Environment, 2014, 144:152-171.

    Google Scholar

    [14] 秦乐, 何鹏, 马玉忠, 等.基于时空谱特征的遥感影像时间序列变化检测[J].自然资源遥感, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.

    Google Scholar

    Qin L, He P, Ma Y Z, et al.Change detection of satellite time series images based on spatial-temporal-spectral features[J].Remote Sensing for Natural Resources, 2022, 34(4):105-112.doi:10.6046/zrzyyg.2021351.

    Google Scholar

    [15] Huang C, Goward S N, Masek J G, et al.An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J].Remote Sensing of Environment, 2010, 114(1):183-198.

    Google Scholar

    [16] 苏文瑞, 田佳, 杨泽康, 等.基于GEE和LandTrendr的宁夏“三山” 森林干扰监测[J].中国水土保持科学(中英文), 2022, 20(6):41-49.

    Google Scholar

    Su W R, Tian J, Yang Z K, et al.Monitoring of forest disturbance in “Three Mountains” of Ningxia based on GEE and LandTrendr[J].Science of Soil and Water Conservation, 2022, 20(6):41-49.

    Google Scholar

    [17] DeVries B, Verbesselt J, Kooistra L, et al.Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series[J].Remote Sensing of Environment, 2015, 161:107-121.

    Google Scholar

    [18] Mugiraneza T, Nascetti A, Ban Y.Continuous monitoring of urban land cover change trajectories with landsat time series and LandTrendr-Google Earth Engine cloud computing[J].Remote Sensing, 2020, 12(18):2883.

    Google Scholar

    [19] Kennedy R, Yang Z, Gorelick N, et al.Implementation of the LandTrendr algorithm on Google Earth Engine[J].Remote Sensing, 2018, 10(5):691.

    Google Scholar

    [20] 官王飞, 徐建恩, 叶珊, 等.丽水市“十三五” 期间林木采伐现状分析[J].福建林业科技, 2022, 49(3):111-115, 124.

    Google Scholar

    Guan W F, Xu J E, Ye S, et al.Current situation analysis of forest cutting in Lishui City during the 13th Five-Year Plan[J].Journal of Fujian Forestry Science and Technology, 2022, 49(3):111-115, 124.

    Google Scholar

    [21] Shen J, Chen G, Hua J, et al.Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and machine-learning method[J].Remote Sensing, 2022, 14(13):3238.

    Google Scholar

    [22] 王塞, 王思诗, 樊风雷.基于时间序列分割算法的雅鲁藏布江流域NDVI(1985-2018)变化模式研究[J].生态学报, 2020, 40(19):6863-6871.

    Google Scholar

    Wang S, Wang S S, Fan F L.Change patterns of NDVI (1985-2018) in the Yarlung Zangbo River basin of China based on time series segmentation algorithm[J].Acta Ecologica Sinica, 2020, 40(19):6863-6871.

    Google Scholar

    [23] 于森, 贾明明, 陈高, 等.基于LandTrendr算法海南东寨港红树林扰动研究[J].自然资源遥感, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.

    Google Scholar

    Yu S, Jia M M, Chen G, et al.A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J].Remote Sensing for Natural Resources, 2023, 35(2):42-49.doi:10.6046/zrzyyg.2022235.

    Google Scholar

    [24] Qiu D, Liang Y, Shang R, et al.Improving LandTrendr forest disturbance mapping in China using multi-season observations and multispectral indices[J].Remote Sensing, 2023, 15(9):2381.

    Google Scholar

    [25] 杨辰, 沈润平.森林扰动遥感监测研究进展[J].国土资源遥感, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.

    Google Scholar

    Yang C, Shen R P.Progress in the study of forest disturbance by remote sensing[J].Remote Sensing for Land and Resources, 2015, 27(1):1-8.doi:10.6046/gtzyyg.2015.01.01.

    Google Scholar

    [26] Kennedy R E, Yang Z, Cohen W B.Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J].Remote Sensing of Environment, 2010, 114(12):2897-2910.

    Google Scholar

    [27] 殷崎栋, 柳彩霞, 田野.基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究--以陕西柴松和太白山保护区为例[J].生态学报, 2020, 40(20):7343-7352.

    Google Scholar

    Yin Q D, Liu C X, Tian Y.Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and LandTrendr algorithm:The case of Chaisong and Taibaishan Natural Reserves in Shaanxi, China[J].Acta Ecologica Sinica, 2020, 40(20):7343-7352.

    Google Scholar

    [28] 陈海喜, 钟九生, 兰安军, 等.基于地形地貌因子的贵州省NDVI时空变化分析[J].贵州科学, 2019, 37(2):36-43.

    Google Scholar

    Chen H X, Zhong J S, Lan A J, et al.Analysis of temporal and spatial variation of NDVI in Guizhou Province based on landform factors[J].Guizhou Science, 2019, 37(2):36-43.

    Google Scholar

    [29] 维基百科编者.丽水市[G/OL].维基百科, 2024(20240201)[2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82& o|did=80740233.

    Google Scholar

    Wikipedia editor.Lishui City [G/OL].Wikipedia, 2024 (20240201) [2024-02-01].https://zh.wikipedia.org/w/index.php?title=%E4%B8%BD%E6%B0%B4%E5%B8%82& o|did=80740233.

    Google Scholar

    [30] 尹雄, 陈帮乾, 古晓威, 等.基于GEE平台LandTrendr算法的海南岛森林扰动快速监测方法及分析[J].地球信息科学学报, 2023, 25(10):2093-2106.

    Google Scholar

    Yin X, Chen B Q, Gu X W, et al.Rapid monitoring of tropical forest disturbance in Hainan Island based on GEE platform and LandTrendr algorithm[J].Journal of Geo-Information Science, 2023, 25(10):2093-2106.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(315) PDF downloads(103) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint