China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2025 Vol. 37, No. 1
Article Contents

SUN Jihong, WEI Helong, SU Guohui, CHEN Hongwen, LIU Jingpeng, LIN Wenrong, WANG Zhao, ZHANG Zhaodai. 2025. Progress in the information-based construction of marine geology. Remote Sensing for Natural Resources, 37(1): 1-7. doi: 10.6046/zrzyyg.2023249
Citation: SUN Jihong, WEI Helong, SU Guohui, CHEN Hongwen, LIU Jingpeng, LIN Wenrong, WANG Zhao, ZHANG Zhaodai. 2025. Progress in the information-based construction of marine geology. Remote Sensing for Natural Resources, 37(1): 1-7. doi: 10.6046/zrzyyg.2023249

Progress in the information-based construction of marine geology

More Information
  • Corresponding author: SU Guohui  
  • As marine geological surveys continue to deepen, there is an urgent need to develop new-generation information technologies to accelerate the transformation of marine geological survey pattern. In recent years, the digital marine geological project has developed a comprehensive framework of trinity that integrates geological cloud, big data, and intellectualization based on the practical needs of marine geological surveys. Furthermore, the planning of three major systems, i.e., the support, core, and key systems, has been proposed for marine geological informatization. These suggest significant progress in the construction of marine geological cloud platform, marine geological big data infrastructure, and intelligent applications in marine geology. The progress also includes the building of professional marine geological nodes and network systems, the formation of a national marine geological data resource system, and the advancement in the intelligent application of marine geological operations. Information-based construction have played a full role in promoting the transformation and upgrading of geological surveys, while also serving natural resources management.
  • 加载中
  • [1] 魏合龙, 孙记红, 苏国辉, 等.数字海洋地质工程建设进展[J].海洋地质前沿, 2018, 34(3): 1-7.

    Google Scholar

    Wei H L, Sun J H, Su G H, et al. Construction progress of digital marine geological project[J]. Marine Geology Frontiers, 2018, 34(3): 1-7.

    Google Scholar

    [2] 青岛海洋地质研究所.数字海洋地质工程2021年度进展报告[R].青岛: 青岛海洋地质研究所, 2021.Qingdao Institute of Marine Geology. Progress report of digital marine geology(2021)[R]. Qingdao: Qingdao Institute of Marine Geology, 2021.

    Google Scholar

    [3] 戴勤奋, 魏合龙, 苏国辉, 等. 海洋地质大数据信息服务体系建设[J].海洋地质前沿, 2017, 33(11): 67-70.

    Google Scholar

    Dai Q F, Wei H L, Su G H, et al. Construction of informatization service system for marine geological big data[J]. Marine Geology Frontiers, 2017, 33(11): 67-70.

    Google Scholar

    [4] 李超岭, 李丰丹, 李健强, 等.智能地质调查体系与架构[J].中国地质, 2015, 42(4): 828-838.

    Google Scholar

    Li C L, Li F D, Li J Q, et al. Smart geological survey architecture [J]. Geology in China, 2015, 42(4): 828-838.

    Google Scholar

    [5] 孙记红, 苏国辉, 林峰, 等.海洋地质信息服务系统建设[J].中国地质调查成果快讯, 2019, 5(1): 18-22.

    Google Scholar

    Sun J H, Su G H, Lin F, et al. Construction of marine geological information service system[J]. China Geological Survey Results News, 2019, 5(1): 18-22.

    Google Scholar

    [6] 戴勤奋.海洋地质数据库内容与结构[R].北京: 中国地质调查局, 2021.Dai Q F. Content and structure of marine geological database[R]. Beijing: China geology survey, 2021.

    Google Scholar

    [7] Sun J H, Wei H L. Construction method of marine geological data service platform based on object-oriented approach[J]. ICIC Express Letters, Part B: Applications, 2015, 6(8): 2047-2052.

    Google Scholar

    [8] 孙记红, 何书锋, 魏合龙, 等.海洋地质数据库应用模型构建方法[J].计算机技术与发展, 2013, 23(12): 194-198.

    Google Scholar

    Sun J H, He S F, Wei H L, et al. Structure method of marine geological database application model[J]. Computer Technology and Development, 2013, 23(12): 194-198.

    Google Scholar

    [9] 宋怀荣, 林峰, 苏国辉, 等. 海洋地质调查数据库数据录入方法[J].海洋地质前沿, 2016, 32(2): 66-70.

    Google Scholar

    Song H R, Lin F, Su G H, et al. Improvement of data entry system for marine geological survey database[J]. Marine Geology Frontiers, 2016, 32(2): 66-70.

    Google Scholar

    [10] 孙记红, 魏合龙, 林文荣, 等.海洋地质调查全流程信息化支持系统的设计与实现[J].海洋地质前沿, 2023, 39(2): 49-55.

    Google Scholar

    Sun J H, Wei H L, Lin W R, et al. Design and running of supporting system to the whole-process informatization of marine geological survey[J]. Marine Geology Frontiers, 2023, 39(2): 49-55.

    Google Scholar

    [11] 陈琦, 苏国辉, 魏合龙, 等.江苏盐城滨海湿地净生态系统碳交换量模拟参数选择[J].海洋地质前沿, 2023, 39(2): 56-65.

    Google Scholar

    Chen Q, Su G H, Wei H L, et al. Selection of parameters for simulation of net ecosystem carbon flux in Yancheng coastal wetland, Jiangsu[J]. Marine Geology Frontiers, 2023, 39(2): 56-65.

    Google Scholar

    [12] Sheng J, Sun J H, Bai Y L, et al. Evaluation of hydrocarbon potential using fuzzy AHP-based grey relational analysis:A case study in the Laoshan Uplift, South Yellow Sea, China[J]. Journal of Geophysics and Engineering, 2020, 17 (1): 189-202.

    Google Scholar

    [13] 孙记红, 魏合龙, 王诏, 等. 基于Open Inventor的重点海域地质体三维模型构建[J].海洋地质前沿, 2018, 34(3): 39-45.

    Google Scholar

    Sun J H, Wei H L, Wang Z, et al. 3D model construction of geological bodies in key marine areas based on Open Inventor[J]. Marine Geology Frontiers, 2018, 34(3): 39-45.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(269) PDF downloads(73) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint