|
[1]
|
He D, Zhong Y, Wang X, et al.Deep convolutional neural network framework for subpixel mapping[J].IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11):9518-9539.
Google Scholar
|
|
[2]
|
Huang B, Zhao B, Song Y.Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J].Remote Sensing of Environment, 2018, 214:73-86.
Google Scholar
|
|
[3]
|
Xu Y, Chen H, Du C, et al.MSACon Mining spatial attention-based contextual information for road extraction[J].IEEE Transactions on Geoscience and Remote Sensing, 1809, 60:5604317.
Google Scholar
|
|
[4]
|
Yuan Q, Shen H, Li T, et al.Deep learning in environmental remote sensing achievements and challenges[J].Remote Sensing of Environment an Interdisciplinary Journal, 2020, 241:111716.
Google Scholar
|
|
[5]
|
Zhu Q, Zhang Y, Wang L, et al.A global context-aware and batch-independent network for road extraction from VHR satellite imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175:353-365.
Google Scholar
|
|
[6]
|
Yang K, Yi J, Chen A, et al.ConDinet++:Full-scale fusion network based on conditional dilated convolution to extract roads from remote sensing images[J].IEEE Geoscience and Remote Sensing Letters, 2021, 19:8015105.
Google Scholar
|
|
[7]
|
He D, Shi Q, Liu X, et al.Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network[J].International Journal of Applied Earth Observation and Geoinformation, 2022, 106:102667.
Google Scholar
|
|
[8]
|
Shelhamer E, Long J, Darrell T.Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017:640-651.
Google Scholar
|
|
[9]
|
Ronneberger O, Fischer P, Brox T.U-net convolutional networks for biomedical image segmentation[C]// IEEE Springer International 2015:234-241.
Google Scholar
|
|
[10]
|
Badrinarayanan V, Kendall A, Cipolla R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
Google Scholar
|
|
[11]
|
Chen L C, Zhu Y, Papandreou G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//Computer Vision-ECCV 2018.Cham Springer International Publishing, 2018:833-851.
Google Scholar
|
|
[12]
|
Gao L, Song W, Dai J, et al.Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network[J].Remote Sensing, 2019, 11(5):552.
Google Scholar
|
|
[13]
|
王勇, 曾祥强.集成注意力机制和扩张卷积的道路提取模型[J].中国图象图形学报, 2022, 27(10):3102-3115.
Google Scholar
Wang Y, Zeng X Q.Road extraction model derived from integrated attention mechanism and dilated convolution[J].Journal of Image and Graphics, 2022, 27(10):3102-3115.
Google Scholar
|
|
[14]
|
吴强强, 王帅, 王彪, 等.空间信息感知语义分割模型的高分辨率遥感影像道路提取[J].遥感学报, 2022, 26(9):1872-1885.
Google Scholar
Wu Q Q, Wang S, Wang B, et al.Road extraction method of high-resolution remote sensing image on the basis of the spatial information perception semantic segmentation model[J].National RemoteSensing Bulletin, 2022, 26(9):1872-1885.
Google Scholar
|
|
[15]
|
Vaswani A, Shazeer N, Parmar N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017, Long Beach.ACM, 2017:6000-6010.
Google Scholar
|
|
[16]
|
Sanchis-Agudo M, Wang Y, Duraisamy K, et al.Easy attention:A simple self-attention mechanism for Transformers[J/OL].2023:arXiv:2308.12874.http //arxiv.org/abs/2308.12874.
Google Scholar
|
|
[17]
|
Dosovitskiy A, Beyer L, Kolesnikov A, et al.An image is worth 16×16 words:Transformers for image recognition at scale[J/OL].2020:arXiv:2010.11929.http //arxiv.org/abs/2010.11929.
Google Scholar
|
|
[18]
|
Yang Z, Zhou D, Yang Y, et al.TransRoadNet:A novel road extraction method for remote sensing images via combining high-level semantic feature and context[J].IEEE Geoscience and Remote Sensing Letters, 1973, 19:6509505.
Google Scholar
|
|
[19]
|
Dai Z, Liu H, Le Q V, et al.CoAtNet:Marrying convolution and attention for all data sizes[J/OL].2021:arXiv:2106.04803.http //arxiv.org/abs/2106.04803.
Google Scholar
|
|
[20]
|
Cao Y, Xu J, Lin S, et al.GCNet:Non-local networks meet squeeze-excitation networks and beyond[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).Seoul, Korea (South).IEEE, 2019:1971-1980.
Google Scholar
|
|
[21]
|
Woo S, Park J, Lee J Y, et al.CBAM:Convolutional block attention module[M]//Computer Vision-ECCV 2018.Cham:Springer International Publishing, 2018:3-19.
Google Scholar
|
|
[22]
|
Su R, Huang W, Ma H, et al.SGE NET:Video object detection with squeezed GRU and information entropy map[C]//2021 IEEE International Conference on Image Processing (ICIP).Anchorage, AK, USA.IEEE, 2021:689-693.
Google Scholar
|
|
[23]
|
Wang Q, Wu B, Zhu P, et al.ECA-net:Efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle.IEEE, 2020:11531-11539.
Google Scholar
|
|
[24]
|
Zhou L, Zhang C, Wu M.D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Salt Lake City.IEEE, 2018:192-1924.
Google Scholar
|