| [1] | 李廉洁, 樊书祥, 王学文, 等.高光谱成像的煤与矸石分类[J].光谱学与光谱分析, 2022, 42(4):1250-1256. 						Google Scholar
						Li L J, Fan S X, Wang X W, et al.Classification method of coal and gangue based on hyperspectral imaging technology[J].Spectro-scopy and Spectral Analysis, 2022, 42(4):1250-1256. 						Google Scholar
						 | 
					
								| [2] | 李嘉琪, 赵艳玲, 任河, 等.自燃煤矸石山的遥感识别--基于Landsat8热红外波段地表温度反演数据[J].金属矿山, 2022(3):205-212. 						Google Scholar
						Li J Q, Zhao Y L, Ren H, et al.Remote sensing recognition of spontaneous combustion gangue dump:Based on Landsat8 thermal infrared band land surface temperature inversion data[J].Metal Mine, 2022(3):205-212. 						Google Scholar
						 | 
					
								| [3] | 侯飞, 胡召玲.基于多尺度分割的煤矿区典型地物遥感信息提取[J].测绘通报, 2012(1):22-25. 						Google Scholar
						Hou F, Hu Z L.Remote sensing information extraction of typical surface objects in a coal mining area based on multiple-scale segmentation[J].Bulletin of Surveying and Mapping, 2012(1):22-25. 						Google Scholar
						 | 
					
								| [4] | 徐良骥, 黄璨, 章如芹, 等.煤矸石充填复垦地理化特性与重金属分布特征[J].农业工程学报, 2014, 30(5):211-219. 						Google Scholar
						Xu L J, Huang C, Zhang R Q, et al.Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5):211-219. 						Google Scholar
						 | 
					
								| [5] | 王小云, 牛艳霞.煤矸石研究综述: 分类、危害及综合利用[J].化工矿物与加工, 2023, 52(11):18-25. 						Google Scholar
						Wang X Y, Niu Y X.Review of research on coal gangue with its classification, hazards and comprehensive utilization[J].Industrial Minerals and Processing, 2023, 52(11):18-25. 						Google Scholar
						 | 
					
								| [6] | 常纪文, 杜根杰, 杜建磊, 等.我国煤矸石综合利用的现状、问题与建议[J].中国环保产业, 2022(8):13-17. 						Google Scholar
						Chang J W, Du G J, Du J L, et al.Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J].China Environmental Protection Industry, 2022(8):13-17. 						Google Scholar
						 | 
					
								| [7] | 王红美.煤矸石综合利用现存问题分析与解决对策研究[J].资源节约与环保, 2022(1):115-117. 						Google Scholar
						Wang H M.Analysis on existing problems and countermeasures of comprehensive utilization of coal gangue[J].Resources Economi-zation and Environmental Protection, 2022(1):115-117. 						Google Scholar
						 | 
					
								| [8] | 荆青青, 张志, 王旭.基于ASTER遥感影像的煤矸石分布信息提取方法[J].煤炭科学技术, 2008, 36(5):93-96. 						Google Scholar
						Jing Q Q, Zhang Z, Wang X.Collecting method of coal refuse distribution information based on ASTER remote sensing images[J].Coal Science and Technology, 2008, 36(5):93-96. 						Google Scholar
						 | 
					
								| [9] | Nádudvari .Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland): A case study[J].International Journal of Coal Geology, 2014, 128/129:47-54. 						Google Scholar
						 | 
					
								| [10] | 周涛, 胡振琪, 阮梦颖, 等.基于无人机遥感的煤矸石山植被分类[J].煤炭科学技术, 2023, 51(5):245-259. 						Google Scholar
						Zhou T, Hu Z Q, Ruan M Y, et al.Classification of coal gangue pile vegetation based on UAV remote sensing[J].Coal Science and Technology, 2023, 51(5):245-259. 						Google Scholar
						 | 
					
								| [11] | Bengio Y, Courville A, Vincent P.Representation learning:A review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. 						Google Scholar
						 | 
					
								| [12] | 王书玉, 张羽威, 于振华.基于随机森林的洪河湿地遥感影像分类研究[J].测绘与空间地理信息, 2014, 37(4):83-85, 93. 						Google Scholar
						Wang S Y, Zhang Y W, Yu Z H.Classification of Honghe wetland remote sensing image based on random forests[J].Geomatics & Spatial Information Technology, 2014, 37(4):83-85, 93. 						Google Scholar
						 | 
					
								| [13] | 龙岩市人民政府.自然地理[EB/OL].(2023-03-16)http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm. 						Google Scholar
						Longyan City People’s Government.Physical geography[EB/OL].(2023-03-16)http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm. 						Google Scholar
						 | 
					
								| [14] | 何仲秋.龙岩市现已探明煤炭资源状况及远景资源区预测[C]//2007年赣皖湘苏闽五省煤炭学会联合学术交流会论文集.厦门, 2007:363-365. 						Google Scholar
						He Z Q.The situation of coal resources and the prediction of prospective resource areas have been proved in Longyan City[C]//Proceedings of the 2007 Joint Academic Exchange meeting of Coal societies of Jiangxi, Anhui, Hunan, Jiangsu and Fujian Provinces.Editorial Department of Energy and Environment, 2007:363-365. 						Google Scholar
						 | 
					
								| [15] | 福建日报.龙岩新罗区: 煤矸石变废为宝煤台披上“新绿装”[EB/OL].(2021-08-18).http://fjnews.fjsen.com/2021-08/18/content_30813574.htm. 						Google Scholar
						Fujian Daily.Longyan Xinluo District:Coal gangue waste into trea-sure coal platform covered with "new green"[EB/OL].(2021-08-18).http://fjnews.fjsen.com/2021-08/18/content_30813574.htm. 						Google Scholar
						 | 
					
								| [16] | 帅爽, 张志, 张天, 等.结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类[J].农业工程学报, 2021, 37(21):199-207. 						Google Scholar
						Shuai S, Zhang Z, Zhang T, et al.Method for classifying vegetation types in arid areas combining spectral and textural features of ZY-1 02D[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21):199-207. 						Google Scholar
						 | 
					
								| [17] | Haralick R M, Shanmugam K, Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6):610-621. 						Google Scholar
						 | 
					
								| [18] | 张炳华, 张镱锂, 谷昌军, 等.基于随机森林与特征选择的藏东南土地覆被分类方法及精度评价[J].地理科学, 2023, 43(3):388-397. 						Google Scholar
						Zhang B H, Zhang Y L, Gu C J, et al.Land cover classification based on random forest and feature optimism in the Southeast Qinghai-Xizang Plateau[J].Scientia Geographica Sinica, 2023, 43(3):388-397. 						Google Scholar
						 | 
					
								| [19] | 方匡南, 吴见彬, 朱建平, 等.随机森林方法研究综述[J].统计与信息论坛, 2011, 26(3):32-38. 						Google Scholar
						Fang K N, Wu J B, Zhu J P, et al.A review of technologies on random forests[J].Statistics and Information Forum, 2011, 26(3):32-38. 						Google Scholar
						 | 
					
								| [20] | 柳明星, 刘建红, 马敏飞, 等.基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J].自然资源遥感, 2022, 34(1):218-229. 						Google Scholar
						Liu M X, Liu J H, Ma M F, et al.Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm:A case study of Linxia, Gansu Province[J].Remote Sensing for Natural Resources, 2022, 34(1):218-229. 						Google Scholar
						 | 
					
								| [21] | 杜晓川, 娄德波, 徐林刚, 等.基于GF-2影像和随机森林算法的花岗伟晶岩提取[J].自然资源遥感, 2023, 35(4):53-60.doi:10.6046/zrzyyg.2022280. 						Google Scholar
						Du X C, Lou D B, Xu L G, et al.Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J].Remote Sensing for Natural Resources, 2023, 35(4):53-60.doi:10.6046/zrzyyg.2022280. 						Google Scholar
						 | 
					
								| [22] | 李兰晖, 黄聪聪, 张镱锂, 等.基于地理加权随机森林的青藏地区放牧强度时空格局模拟[J].地理科学, 2023, 43(3):398-410. 						Google Scholar
						Li L H, Huang C C, Zhang Y L, et al.Mapping the multi-temporal grazing intensity on the Qinghai-Xizang Plateau using geographically weighted random forest[J].Scientia Geographica Sinica, 2023, 43(3):398-410. 						Google Scholar
						 | 
					
								| [23] | 陈红星.基于多源数据和随机森林算法的建筑物尺度人口估算[D].上海:华东师范大学, 2021.Chen H X.Population estimation at the building level based on multi-source data and random forest algorithm[D].Shanghai:East China Normal University, 2021. 						Google Scholar
						 | 
					
								| [24] | 胡永攀, 李瑛, 姚熠凯, 等.基于顺序向前选择算法的制冷系统故障诊断分析[J].能源研究与信息, 2016, 32(2):90-95. 						Google Scholar
						Hu Y P, Li Y, Yao Y K, et al.Refrigeration system fault diagnosis based on sequential forward order feature selection algorithm[J].Energy Research and Information, 2016, 32(2):90-95. 						Google Scholar
						 | 
					
								| [25] | 王斌, 何丙辉, 林娜, 等.基于随机森林特征选择的茶园遥感提取[J].吉林大学学报(工学版), 2022, 52(7):1719-1732. 						Google Scholar
						Wang B, He B H, Lin N, et al.Tea plantation remote sensing extraction based on random forest feature selection[J].Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7):1719-1732. 						Google Scholar
						 |