|
[1]
|
Mishra M K, Rathore P S, Misra A, et al.Atmospheric correction of multispectral VNIR remote sensing data:Algorithm and inter-sensor comparison ofAerosol and surface reflectance products[J].Earth and Space Science, 2020, 7(9):e2019EA000710.
Google Scholar
|
|
[2]
|
Xie Y, Xue Y, Guang J, et al.Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites:GOES-16, MSG-1, MSG-4, and himawari-8[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1538-1549.
Google Scholar
|
|
[3]
|
Sosnowski T R.Aerosols and human health:A multiscale problem[J].Chemical Engineering Science, 2023, 268:118407.
Google Scholar
|
|
[4]
|
Kaufman Y J, Wald A E, Remer L A, et al.The MODIS 2.1-/ spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol[J].IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1286-1298.
Google Scholar
|
|
[5]
|
Levy R C, Remer L A, Mattoo S, et al.Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J].Journal of Geophysical Research:Atmospheres, 2007, 112(D13):211-231.
Google Scholar
|
|
[6]
|
Hsu N C, Tsay S C, King M D, et al.Aerosol properties over bright-reflecting source regions[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):557-569.
Google Scholar
|
|
[7]
|
Hsu N C, Tsay S C, King M D, et al.Deep blue retrievals of Asian aerosol properties during ACE-asia[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11):3180-3195.
Google Scholar
|
|
[8]
|
Chen Q X, Han X L, Gu Y, et al.Evaluation of MODIS, MISR, and VIIRS daily level-3 aerosol optical depth products over land[J].Atmospheric Research, 2022, 265:105810.
Google Scholar
|
|
[9]
|
Gao L, Chen L, Li C, et al.Evaluation and possible uncertainty source analysis of JAXA Himawari-8 aerosol optical depth product over China[J].Atmospheric Research, 2021, 248:105248.
Google Scholar
|
|
[10]
|
胡秀清, 卢乃锰, 邱红.FY-1C/1D全球海上气溶胶业务反演算法研究[J].海洋学报, 2006, 28(2):56-65.
Google Scholar
Hu X Q, Lu N M, Qiu H.Development of aerosol retrieval algorithm over global ocean using FY-1C/1D data[J].Acta Oceanologica Sinica, 2006, 28(2):56-65.
Google Scholar
|
|
[11]
|
任通, 高玲, 李成才, 等.利用风云2C静止卫星可见光资料反演气溶胶光学厚度[J].北京大学学报(自然科学版), 2011, 47(4):636-646.
Google Scholar
Ren T, Gao L, Li C C, et al.Retrieval of aerosol optical depth from Fengyun-2C geostationary satellite observation:Theory and implementation[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4):636-646.
Google Scholar
|
|
[12]
|
刘智超, 王健, 张鹏, 等.风云三号卫星气溶胶光学厚度产品的适用性验证[J].环境监测管理与技术, 2023, 35(2):18-22.
Google Scholar
Liu Z C, Wang J, Zhang P, et al.Verification of aerosol optical depth observed by FY-3 satellite[J].The Administration and Technique of Environmental Monitoring, 2023, 35(2):18-22.
Google Scholar
|
|
[13]
|
Saide P E, Kim J, Song C H, et al.Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations[J].Geophysical Research Letters, 2014, 41(24):9188-9196.
Google Scholar
|
|
[14]
|
许梦婕.FY-4A气象卫星对京津冀地区AOD的反演方法研究[D].南京:南京信息工程大学, 2021.Xu M J.Study on inversion method of AOD in Beijing-Tianjin-Hebei region by FY-4A meteorological satellite[D].Nanjing:Nanjing University of Information Science & Technology, 2021.
Google Scholar
|
|
[15]
|
Jiang X, Xue Y, Jin C, et al.A simple band ratio library (BRL) algorithm for retrieval of hourly aerosol optical depth using FY-4A AGRI geostationary satellite data[J].Remote Sensing, 2022, 14(19):4861.
Google Scholar
|
|
[16]
|
陈兴峰, 郑逢杰, 郭丁, 等.气溶胶定量遥感的机器学习方法综述[J].遥感学报, 2021, 25(11):2220-2233.
Google Scholar
Chen X F, Zheng F J, Guo D, et al.Review of machine learning methods for aerosol quantitative remote sensing[J].National Remote Sensing Bulletin, 2021, 25(11):2220-2233.
Google Scholar
|
|
[17]
|
Ristovski K, Vucetic S, Obradovic Z.Uncertainty analysis of neural-network-based aerosol retrieval[J].IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):409-414.
Google Scholar
|
|
[18]
|
Levy R C, Remer L A, Kleidman R G, et al.Global evaluation of the Collection 5 MODIS dark-target aerosol products over land[J].Atmospheric Chemistry and Physics, 2010, 10(21):10399-10420.
Google Scholar
|
|
[19]
|
Ding H, Zhao L, Liu S, et al.FY-4A/AGRI aerosol optical depth retrieval capability test and validation based on NNAeroG[J].Remote Sensing, 2022, 14(21):5591.
Google Scholar
|
|
[20]
|
Yuan Q, Shen H, Li T, et al.Deep learning in environmental remote sensing:Achievements and challenges[J].Remote Sensing of Environment, 2020, 241:111716.
Google Scholar
|
|
[21]
|
Eck T F, Holben B N, Reid J S, et al.Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J].Journal of Geophysical Research:Atmospheres, 1999, 104(D24):31333-31349.
Google Scholar
|
|
[22]
|
Sun Z, Zhang B, Yao Y.Improving the estimation of weighted mean temperature in China using machine learning methods[J].Remote Sensing, 2021, 13(5):1016.
Google Scholar
|
|
[23]
|
高阿芳.基于改进随机森林的耕深预测模型研究[D].长春:长春工业大学, 2022.Gao A F.Research on prediction model of tillage depth based on an improved random forest[D].Changchun:Changchun University of Technology, 2022.
Google Scholar
|
|
[24]
|
Levy R C, Mattoo S, Munchak L A, et al.The Collection 6 MODIS aerosol products over land and ocean[J].Atmospheric Measurement Techniques, 2013, 6(11):2989-3034.
Google Scholar
|
|
[25]
|
Levy R C, Munchak L A, Mattoo S, et al.Towards a long-term global aerosol optical depth record:Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance[J].Atmospheric Measurement Techniques, 2015, 8(10):4083-4110.
Google Scholar
|
|
[26]
|
Sawyer V, Levy R C, Mattoo S, et al.Continuing the MODIS dark target aerosol time series with VIIRS[J].Remote Sensing, 2020, 12(2):308.
Google Scholar
|
|
[27]
|
Chen Y, Fan M, Li M, et al.Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm[J].Remote Sensing, 2022, 14(13):2967.
Google Scholar
|
|
[28]
|
陈岚琪.基于GWR的郑州市域林地景观格局、气象与气溶胶光学厚度的空间关系研究[D].郑州:河南农业大学, 2020.Chen L Q.Spatial relationship among forest landscape pattern, meteorology and aerosol based on GWR model in Zhengzhou City[D].Zhengzhou:Henan Agricultural University, 2020.
Google Scholar
|
|
[29]
|
杨阳, 赵娜, 岳天祥.1980-2018年中国极端高温事件时空格局演变特征[J].地理科学, 2022, 42(3):536-547.
Google Scholar
Yang Y, Zhao N, Yue T X.Spatio-temporal variations of extreme high temperature event in China from 1980 to 2018[J].Scientia Geographica Sinica, 2022, 42(3):536-547.
Google Scholar
|
|
[30]
|
Xue R, Ai B, Lin Y, et al.Spatial and temporal distribution of aerosol optical depth and its relationship with urbanization in Shandong Province[J].Atmosphere, 2019, 10(3):110.
Google Scholar
|
|
[31]
|
Zhao C, Wang Y, Shi X, et al.Estimating the contribution of local primary emissions to particulate pollution using high-density station observations[J].Journal of Geophysical Research:Atmospheres, 2019, 124(3):1648-1661.
Google Scholar
|
|
[32]
|
Jin Q, Wei J, Yang Z L, et al.Consistent response of Indian summer monsoon to Middle East dust in observations and simulations[J].Atmospheric Chemistry and Physics, 2015, 15(17):9897-9915.
Google Scholar
|