China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2025 Vol. 37, No. 1
Article Contents

WEI Xiaoqiang, YANG Guolin, LIU Tao, SHAO Ming, MA Zhigang. 2025. A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data. Remote Sensing for Natural Resources, 37(1): 122-130. doi: 10.6046/zrzyyg.2023208
Citation: WEI Xiaoqiang, YANG Guolin, LIU Tao, SHAO Ming, MA Zhigang. 2025. A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data. Remote Sensing for Natural Resources, 37(1): 122-130. doi: 10.6046/zrzyyg.2023208

A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data

More Information
  • Corresponding author: YANG Guolin  
  • The increasing dependence on groundwater in the Hexi region has led to a significant drop in the groundwater table, which has induced land subsidence in some areas. Studying the relationship between groundwater changes and land subsidence hysteresis in the Hexi region holds great significance for local water resource management, land use planning, and agricultural development. This study determined the changing rate of groundwater in the study area from 2010 to 2017 using the GRACE and GLDAS data and verified the reliability of the inverted groundwater changes by combining measured data from monitoring wells. Then, this study derived the surface deformation rate of the local subsidence areas from October 2014 to June 2017 using the small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technique, as well as comparing and validating the results using the persistent scatterer interferometric synthetic aperture radar (PS-InSAR) technique. Finally, this study analyzed the relationship between groundwater changes and surface subsidence data using fast Fourier transform and time-delay correlation analysis. The results indicate that the time lags between land subsidence and groundwater changes were 74~86 d, 61~80 d, 80~99 d, and 74~99 d, respectively in the Linze, Ganzhou, Liangzhou, and Jinchuan subsidence areas, with respective correlation coefficients ranging from 0.541 to 0.593, from 0.589 to 0.689, from 0.600 to 0.750, and 0.543 to 0.630, respectively. The results of this study will provide a scientific basis for water resource management, land use planning, and agricultural development in the Hexi region.
  • 加载中
  • [1] 于海若, 宫辉力, 陈蓓蓓, 等.新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J].国土资源遥感, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.

    Google Scholar

    Yu H R, Gong H L, Chen B B, et al.Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J].Remote Sen-sing for Land and Resources, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.

    Google Scholar

    [2] Castellazzi P, Martel R, Galloway D L, et al.Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations[J].Ground Water, 2016, 54(6): 768-780.

    Google Scholar

    [3] Castellazzi P, Longuevergne L, Martel R, et al.Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach[J].Remote Sensing of Environment, 2018, 205: 408-418.

    Google Scholar

    [4] Rodell M, Velicogna I, Famiglietti J S.Satellite-based estimates of groundwater depletion in India[J].Nature, 2009, 460(7258): 999-1002.

    Google Scholar

    [5] 虎小强, 杨树文, 闫恒, 等.基于时序InSAR的新疆阿希矿区地表形变监测与分析[J].自然资源遥感, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.

    Google Scholar

    Hu X Q, Yang S W, Yan H, et al.Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J].Remote Sensing for Natural Resources, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.

    Google Scholar

    [6] 张庆洁, 赵争, 贾李博, 等.黄河三角洲地面沉降现状及影响因素分析[J].测绘科学, 2022, 47(12):165-173.

    Google Scholar

    Zhang Q J, Zhao Z, Jia L B, et al.Analysis of land subsidence status and influencing factors in Yellow River Delta[J].Science of Surveying and Mapping, 2022, 47(12):165-173.

    Google Scholar

    [7] 杨旺, 何毅, 张立峰, 等.甘肃金川矿区地表三维形变InSAR监测[J].自然资源遥感, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107Yang W, He Y, Zhang L F, et al.InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J].Remote Sensing for Natural Resources, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.

    Google Scholar

    [8] Guo J, Zhou L, Yao C, et al.Surface subsidence analysis by multi-temporal InSAR and GRACE: A case study in Beijing[J].Sensors, 2016, 16(9): 1495.

    Google Scholar

    [9] Vasco D W, Kim K H, Farr T G, et al.Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California[J].Scientific Reports, 2022, 12(1): 3867.

    Google Scholar

    [10] Massoud E C, Liu Z, Shaban A, et al.Groundwater depletion signals in the Beqaa Plain, Lebanon:Evidence from GRACE and Sentinel-1 data[J].Remote Sensing, 2021, 13(5): 915.

    Google Scholar

    [11] 费太政, 常晓涛, 朱广彬, 等.利用GRACE与Sentinel-1反演地下水变化与地表沉降研究[J].测绘科学, 2023, 48(1):140-147.

    Google Scholar

    Fei T Z, Chang X T, Zhu G B, et al.Study on inversion of ground-water change and surface subsidence using GRACE and Sentinel-1[J].Science of Surveying and Mapping, 2023, 48(1):140-147.

    Google Scholar

    [12] 李红英, 李岩瑛, 王云鹏, 等.河西走廊西部沙尘暴时空差异及其动力分析[J].干旱区资源与环境, 2022, 36(10):104-112.

    Google Scholar

    Li H Y, Li Y Y, Wang Y P, et al.Temporal and spatial differences and dynamic analysis of sandstorms in the west of Hexi Corridor[J].Journal of Arid Land Resources and Environment, 2022, 36(10):104-112.

    Google Scholar

    [13] 李平平.甘肃省地下水超采区地面沉降控制区判定方法和结果探讨[J].中国农村水利水电, 2019(6):74-77.

    Google Scholar

    Li P P.Determination method and discussion of ground subsidence control area of groundwater overmining area in Gansu Province[J].China Rural Water and Hydropower, 2019(6):74-77.

    Google Scholar

    [14] Zheng M, Deng K, Fan H, et al.Monitoring and analysis of surface deformation in mining area based on InSAR and GRACE[J].Remote Sensing, 2018, 10(9):1392.

    Google Scholar

    [15] Wang Q, Zheng W, Yin W, et al.Improving the resolution of GRACE/InSAR groundwater storage estimations using a new subsidence feature weighted combination scheme[J].Water, 2023, 15(6):1017.

    Google Scholar

    [16] Agarwal V, Kumar A, Gomes R L, et al.Monitoring of ground movement and groundwater changes in London using InSAR and GRACE[J].Applied Sciences, 2020, 10(23):8599.

    Google Scholar

    [17] Khorrami M, Shirzaei M, Ghobadi-Far K, et al.Groundwater vo-lume loss in Mexico City constrained by InSAR and GRACE observations and mechanical models[J].Geophysical Research Letters, 2023, 50(5): e2022GL101962.

    Google Scholar

    [18] Liu Z, Liu P W, Massoud E, et al.Monitoring groundwater change in California’s central valley using Sentinel-1 and GRACE observations[J].Geosciences, 2019, 9(10):436.

    Google Scholar

    [19] Ferretti A, Prati C, Rocca F.Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.

    Google Scholar

    [20] Berardino P, Fornaro G, Lanari R, et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

    Google Scholar

    [21] 杨国林, 孙学先, 胡栋, 等.利用GRACE数据研究柴达木盆地区域水储量时空变化及干旱特征[J].导航定位学报, 2023, 11(1):107-112.

    Google Scholar

    Yang G L, Sun X X, Hu D, et al.Application of GRACE data in analysis on temporal and spatial changes of water reserves and drought characteristics of Qaidam Basin[J].Journal of Navigation and Positioning, 2023, 11(1):107-112.

    Google Scholar

    [22] 韦振锋, 任志远, 张翀.气候因子与植被的时滞相关分析--以广西为例[J].生态环境学报, 2013, 22(11):1757-1762.

    Google Scholar

    Wei Z F, Ren Z Y, Zhang C.Analysis on the time-lag correlation between vegetation and climatic factors:Take Guangxi as an example[J].Ecology and Environmental Sciences, 2013, 22(11):1757-1762.

    Google Scholar

    [23] Hussain M A, Chen Z, Zheng Y, et al.PS-InSAR based monitoring of land subsidence by groundwater extraction for Lahore Metropolitan City, Pakistan[J].Remote Sensing, 2022, 14(16):3950.

    Google Scholar

    [24] Béjar-Pizarro M, Ezquerro P, Herrera G, et al.Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain[J].Journal of Hydrology, 2017, 547:678-689.

    Google Scholar

    [25] 范军, 左小清, 李涛, 等.PS-InSAR和SBAS-InSAR技术对昆明主城区地面沉降监测的对比分析[J].测绘工程, 2018, 27(6):50-58.

    Google Scholar

    Fan J, Zuo X Q, Li T, et al.Analysis and comparison of PS-InSAR and SBAS-InSAR for ground subsidence monitoring in the main city of Kunming[J].Engineering of Surveying and Mapping, 2018, 27(6):50-58.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(279) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint