[1] |
王小龙, 张杰, 初佳兰. 基于光学遥感的海岛潮间带和湿地信息提取——以东沙岛(礁)为例[J]. 海洋科学进展, 2005(4):477-481.
Google Scholar
|
[2] |
Wang X L, Zhang J, Chu J L. Extraction of remotely sensed information of island intertidal zone and wetland:Taking the Dongsha Island as an example[J]. Advances Marine Science, 2005(4):477-481.
Google Scholar
|
[3] |
刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
Google Scholar
|
[4] |
Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.
Google Scholar
|
[5] |
李晶, 雷茵茹, 崔丽娟, 等. 我国滨海滩涂湿地现状及研究进展[J]. 林业资源管理, 2018(2):24-28,137.
Google Scholar
|
[6] |
Li J, Lei Y R, Cui L J, et al. Current status and research progress of coastal tidal flat wetlands in China[J]. Forest Resources Management, 2018(2):24-28,137.
Google Scholar
|
[7] |
吴威, 李彩霞, 陈雪初. 基于生态系统服务的海岸带生态修复工程成效评估——以鹦鹉洲湿地为例[J]. 华东师范大学学报(自然科学版), 2020(3):98-108.
Google Scholar
|
[8] |
Wu W, Li C X, Chen X C. Evaluation of the effectiveness of a coastal ecological restoration project based on ecosystem services: A case study on Yingwuzhou Wetland,China[J]. Journal of East China Normal University (Natural Science), 2020(3): 98-108.
Google Scholar
|
[9] |
王雨岚, 王远东, 郑衡泌. 基于多时相遥感的泉州湾滨海湿地变化监测[J]. 赣南师范大学学报, 2017, 38(3):102-107.
Google Scholar
|
[10] |
Wang Y L, Wang Y D, Zheng H M. Monitoring dynamic changes of coastal wetlands and its surrounding areas in Quanzhou Bay based on multi-temporal remote sensing images[J]. Journal of Gannan Normal University, 2017, 38(3):102-107.
Google Scholar
|
[11] |
Ren C, Wang Z, Zhang Y, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984—2016[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101902.
Google Scholar
|
[12] |
Meng W, Hu B, He M, et al. Temporal-spatial variations and driving factors analysis of coastal reclamation in China[J]. Estuarine,Coastal and Shelf Science, 2017, 191: 39-49.
Google Scholar
|
[13] |
程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2):348-357.
Google Scholar
|
[14] |
Cheng L N, Zhong C R, Li X Y, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2):348-357.
Google Scholar
|
[15] |
骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10):1133-1142.
Google Scholar
|
[16] |
Luo Y M. Sustainability associated coastal eco-environmental problems and coastal science development in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1133-1142.
Google Scholar
|
[17] |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
Google Scholar
|
[18] |
Kumar L, Mutanga O. Google Earth Engine applications since inception: Usage,trends,and potential[J]. Remote Sensing, 2018, 10(10):1509.
Google Scholar
|
[19] |
付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报, 2021, 25(1):220-230.
Google Scholar
|
[20] |
Fu D J, Xiao H, Su F Z, et al. Remote sensing cloud computing platform development and Earth science application[J]. National Remote Sensing Bulletin, 2021, 25(1):220-230.
Google Scholar
|
[21] |
邹亚东, 何亮, 张晓萍, 等. 基于GEE数据平台的北洛河流域1970—2019年土地利用结构变化特征[J]. 水土保持通报, 2021, 41(6):209-219.
Google Scholar
|
[22] |
Zou Y D, He L, Zhang X P, et al. Characteristics of land use structure change in Beiluo River basin during 1970—2019 based on Google Earth Engine[J]. Bulletin of Soil and Water Conservation, 2021, 41(6):209-219.
Google Scholar
|
[23] |
戴声佩, 易小平, 罗红霞, 等. 基于GEE和Landsat时间序列数据的海南岛土地利用分类研究[J]. 热带作物学报, 2021, 42(11):3351-3357.
Google Scholar
|
[24] |
Dai S P, Yi X P, Luo H X, et al. Mapping land use in Hainan Island based on Google Earth Engine and Landsat time series data[J]. Journal of Tropical Crops, 2021, 42(11):3351-3357.
Google Scholar
|
[25] |
陈康明, 朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4):751-759.
Google Scholar
|
[26] |
Chen K M, Zhu X D. Remote Sensing of spatio-temporal dynamics of saltmarsh vegetation along South China Coast based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2021, 36(4):751-759.
Google Scholar
|
[27] |
李若楠, 欧光龙, 代沁伶, 等. 基于GEE和Landsat时间序列数据的香格里拉森林类型分类研究[J]. 西南林业大学学报(自然科学), 2020, 40(5):115-125.
Google Scholar
|
[28] |
Li R N, Ou G L, Dai Q L, et al. Forest types classification of Shangri-La based on Google Earth Engine and Landsat time-series data[J]. Journal of Southwest Forest University, 2020, 40(5):115-125.
Google Scholar
|
[29] |
Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160):850-853.
Google Scholar
|
[30] |
Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
Google Scholar
|
[31] |
闰亚迪, 崔耀平, 秦耀辰, 等. 基于GEE的黄河滩区水土时空动态研究[J]. 人民黄河, 2021, 43(9):85-89,93.
Google Scholar
|
[32] |
Run Y D, Cui Y P, Qin Y C, et al. Spatial-temporal dynamic of water and land in the Yellow River beach area based on Google Earth Engine[J]. Yellow River, 2021, 43(9):85-89,93.
Google Scholar
|
[33] |
Chen B Q, Xiao X M, Li X P, et al. A mangrove forest map of china in 2015: Analysis of time series Landsat7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:104-120.
Google Scholar
|
[34] |
Wang X X, Xiao X M, Zou Z H, et al. Tracking annual changes of coastal tidal flats in china during 1986—2016 through analyses of Landsat images with Google Earth Engine[J]. Remote Sensing of Environment, 2018, 238:110987-111002.
Google Scholar
|
[35] |
Campbell A D, Wang Y Q. Salt marsh monitoring along the Midatlantic Coast by Google Earth Engine enabled time series[J]. PLOS One, 2020, 15(2):229605-229628.
Google Scholar
|
[36] |
Catalao J, Nico G. Multitemporal backscattering logistic analysis for intertidal bathymetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):1066-1073.
Google Scholar
|
[37] |
Zhang X, Treitz P M, Chen D, et al. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 62: 201-214.
Google Scholar
|
[38] |
Dhanjal-Adams K L, Hanson J O, Murray N J, et al. The distribution and protection of intertidal habitats in Australia[J]. Emu-Austral Ornithology, 2016, 116(2): 208-214.
Google Scholar
|
[39] |
Zhang K Y, Dong X Y, Liu Z G, et al. Mapping tidal flats with Landsat8 images and Google Earth Engine:A case study of the China’s Eastern Coastal Zone circa 2015[J]. Remote Sensing, 2019, 11(8): 924.
Google Scholar
|
[40] |
Wang X X, Xiao X M, Zou Z H, et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 312-326.
Google Scholar
|
[41] |
Murray N J, Phinn S R, Clemens R S, et al. Continental scale mapping of tidal flats across East Asia using the Landsat archive[J]. Remote Sensing, 2012, 4(11):3417-3426.
Google Scholar
|
[42] |
Murray N J, Phinn S R, DeWitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738): 222-225.
Google Scholar
|
[43] |
Jia M, Wang Z, Mao D, et al. Rapid,robust,and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255: 112285.
Google Scholar
|
[44] |
Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations[J]. Remote Sensing of Environment, 2017, 195: 153-169.
Google Scholar
|
[45] |
Liu Y, Li M, Cheng L, et al. Topographic mapping of offshore sandbank tidal flats using the waterline detection method: A case study on the Dongsha Sandbank of Jiangsu Radial Tidal Sand Ridges,China[J]. Marine Geodesy, 2012, 35(4): 362-378.
Google Scholar
|
[46] |
Wang X, Gao X, Zhang Y, et al. Land-cover classification of coastal wetlands using the RF algorithm for Worldview-2 and Landsat8 images[J]. Remote Sensing, 2019, 11(16): 1927.
Google Scholar
|
[47] |
Zhang H, Jiang Q, Xu J. Coastline extraction using support vector machine from remote sensing image[J]. Journal of Multimedia, 2013, 8(2): 175-182.
Google Scholar
|
[48] |
陈超, 陈慧欣, 陈东, 等. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2):141-152.doi: 10.6046/gtzyyg.2020248.
Google Scholar
|
[49] |
Chen C, Chen H X, Chen D, et al. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land and Resources, 2021, 33(2):141-152.doi: 10.6046/gtzyyg.2020248.
Google Scholar
|
[50] |
Chen H, Chen C, Zhang Z, et al. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island,China[J]. Ocean and Coastal Management, 2021, 213: 105842.
Google Scholar
|
[51] |
Chen C, Chen H, Liao W, et al. Dynamic monitoring and analysis of land-use and land-cover change using Landsat multitemporal data in the Zhoushan Archipelago,China[J]. IEEE Access, 2020, 8: 210360-210369.
Google Scholar
|
[52] |
张欢, 李弘毅, 李浩杰, 等. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6):1311-1320.
Google Scholar
|
[53] |
Zhang H, Li H Y, Li H J, et al. Accuracy evaluation of remote sensing elevation data in alpine mountains based on airborne LiDAR[J]. Remote Sensing Technology and Application, 2021, 36(6):1311-1320.
Google Scholar
|
[54] |
卢喜平. 基于Google Earth的DEM数据获取及坡度分析应用[J]. 四川水利, 2018, 39(5):100-104.
Google Scholar
|
[55] |
Lu X P. DEM data acquisition and slope analysis application based on Google Earth[J]. Sichuan Water Resources, 2018, 39(5):100-104.
Google Scholar
|
[56] |
饶萍, 王建力. 最优分区与最优指数联合的水体信息提取[J]. 地球信息科学学报, 2017, 19(5):702-712.
Google Scholar
|
[57] |
Rao P, Wang J L. Water extraction based on the optimal subregion and the optimal indexes combined[J]. Journal of Geo-Information Science, 2017, 19(5):702-712.
Google Scholar
|
[58] |
McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
Google Scholar
|
[59] |
Rogers A S, Kearney M S. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices[J]. International Journal of Remote Sensing, 2004, 25(12):2317-2335.
Google Scholar
|
[60] |
Xu H Q. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033.
Google Scholar
|
[61] |
Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35.
Google Scholar
|
[62] |
Ji L, Zhang L, Wylie B. Analysis of dynamic thresholds for the normalized difference water index[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(11):1307-1317.
Google Scholar
|
[63] |
Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150.
Google Scholar
|
[64] |
吴冰, 秦志远. 自动确定图像二值化最佳阈值的新方法[J]. 测绘学院学报, 2001(4):283-286.
Google Scholar
|
[65] |
Wu B, Qin Z Y. New approaches for the automatic selection of the optimal threshold in image binarization[J]. Journal of Institute of Surveying and Mapping, 2001(4):283-286.
Google Scholar
|
[66] |
汪政辉, 辛存林, 孙喆, 等. Sentinel-2数据的小型湖泊水生植被类群自动提取方法——以翠屏湖为例[J]. 遥感信息, 2019, 34(5):132-141.
Google Scholar
|
[67] |
Wang Z H, Xin C L, Sun Z, et al. Automatic extraction method of aquatic vegetation types in small shallow lakes research based on Sentinel-2 data: A case study of Cuiping Lake[J]. Remote Sensing Information, 2019, 34(5):132-141.
Google Scholar
|
[68] |
高媛. 全球30米土地覆盖产品的精度评估研究[D]. 西安: 西安科技大学, 2021.
Google Scholar
|
[69] |
Gao Y. Study on accuracy assessment of global 30 m land cover products[D]. Xi’an: Xi’an University of Science and Technology, 2021.
Google Scholar
|