| [1] |
Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake[J]. Nature Communications, 2016, 7:13428.
Google Scholar
|
| [2] |
唐希颖, 武红, 董金玮, 等. 沙化和退化状态对甘南草地生态系统固碳的影响[J]. 生态学杂志, 2022, 41(2):278-286.
Google Scholar
|
| [3] |
Tang X Y, Wu H, Dong J W, et al. Effects of desertification and degradation on carbon sequestration of grassland ecosystem in Gannan[J]. Chinese Journal of Ecology, 2022, 41(2):278-286.
Google Scholar
|
| [4] |
杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574.
Google Scholar
|
| [5] |
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae), 2022, 52(4):534-574.
Google Scholar
|
| [6] |
Woodwell G M, Whitaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199:141-146.
Google Scholar
|
| [7] |
刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15):5306-5317.
Google Scholar
|
| [8] |
Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15):5306-5317.
Google Scholar
|
| [9] |
陈雪娇, 周伟, 杨晗. 2001—2017年三江源区典型草地群落碳源/汇模拟及动态变化分析[J]. 干旱区地理, 2020, 43(6):1583-1592.
Google Scholar
|
| [10] |
Chen X J, Zhou W, Y H. Simulation and dynamic change of carbon source/sink in the typical grassland communities in the Three River Source area from 2001 to 2017[J]. Arid Land Geography, 2020, 43(6):1583-1592.
Google Scholar
|
| [11] |
王苗苗. 三江源区高寒草甸草产量遥感监测及植物碳汇动态研究[D]. 兰州: 兰州大学, 2011.
Google Scholar
|
| [12] |
Wang M M. Study of the alpine meadow yield monitoring and the dynamic of vegetation carbon sequestration in the source region of Yangtze,Yellow and Lancang Rivers[D]. Lanzhou: Lanzhou University, 2011.
Google Scholar
|
| [13] |
郑飞鸽, 易桂花, 张廷斌, 等. 三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学, 2020, 40(1):401-413.
Google Scholar
|
| [14] |
Zheng F G, Yi G H, Zhang T B, et al. Study on spatio-temporal dynamics of vegetation carbon use efficiency and its response to climate factors in Three-River Headwaters region[J]. China Environmental Science, 2020, 40(1):401-413.
Google Scholar
|
| [15] |
苏淑兰. 三江源草地生态系统碳储量及其影响因素[D]. 兰州: 兰州大学, 2015.
Google Scholar
|
| [16] |
Su S L. Carbon storage and its influencing factors of the grassland in Three River Sources Region[D]. Lanzhou: Lanzhou University, 2015.
Google Scholar
|
| [17] |
张继平, 刘春兰, 郝海广, 等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 2015, 24(1):8-13.
Google Scholar
|
| [18] |
Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences, 2015, 24(1):8-13.
Google Scholar
|
| [19] |
路秋玲, 李愿会. 三江源自然保护区森林植被层碳储量及碳密度研究[J]. 林业资源管理, 2018(4):146-153.
Google Scholar
|
| [20] |
Lu Q L, Li Y H. Study on carbon storage and carbon density of forest vegetation in Sanjiangyuan Nature Reserve[J]. Forest Resources Management, 2018(4):146-153.
Google Scholar
|
| [21] |
李宗洮. 青海三江源地区农业碳排放影响因素及减排对策研究[D]. 西宁: 青海大学, 2020.
Google Scholar
|
| [22] |
Li Z T. Study on factors affecting agricultural carbon emission and countermeasures for emission reduction in Sanjiangyuan region of Qinghai[D]. Xining: Qinghai University, 2020.
Google Scholar
|
| [23] |
任小丽, 何洪林, 张黎, 等. 2001—2010年三江源区草地净生态系统生产力估算[J]. 环境科学研究, 2017, 30(1):51-58.
Google Scholar
|
| [24] |
Ren X L, He H L, Zhang L, et al. Net ecosystem production of alpine grasslands in the Three-River Headwaters region during 2001—2010[J]. Research of Environmental Sciences, 2017, 30(1):51-58.
Google Scholar
|
| [25] |
Long T, Zhang Z, He G, et al. 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine[J]. Remote Sensing, 2019, 11(5): 489.
Google Scholar
|
| [26] |
陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine平台的三江源地区生态环境质量动态监测与分析[J]. 地球信息科学学报, 2019, 21(9):1382-1391.
Google Scholar
|
| [27] |
Chen W, Huang H P, Tian Y C, et al. Monitoring and assessment of the eco-environment quality in the Sanjiangyuan region based on Google Earth Engine[J]. Journal of Geo-Information Science, 2019, 21(9):1382-1391.
Google Scholar
|
| [28] |
傅伯杰, 刘国华, 陈利顶, 等. 中国生态区划方案[J]. 生态学报, 2001(1):1-6.
Google Scholar
|
| [29] |
Fu B J, Liu G H, Chen L D, et al. Scheme of ecological regionalization in China[J]. Acta Ecologica Sinica, 2001(1):1-6.
Google Scholar
|
| [30] |
郑修诚, 周斌, 雷惠, 等. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1):18-26.doi: 10.6046/zrzyyg.2022021.
Google Scholar
|
| [31] |
Zheng X C, Zhou B, Li H, et al. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1):18-26.doi: 10.6046/zrzyyg.2022021.
Google Scholar
|
| [32] |
戴尔阜, 黄宇, 吴卓, 等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J]. 地理学报, 2016, 71(1):21-34.
Google Scholar
|
| [33] |
Dai E F, Huang Y, Wu Z, et al. Spatial-temporal features of carbon source-sink and its relationship with climate factors in Inner Mongolia grassland ecosystem[J]. Acta Geographica Sinica, 2016, 71(1):21-34.
Google Scholar
|
| [34] |
巩杰, 张影, 钱彩云. 甘肃白龙江流域净生态系统生产力时空变化[J]. 生态学报, 2017, 37(15):5121-5128.
Google Scholar
|
| [35] |
Gong J, Zhang Y, Qian C Y. Temporal and spatial distribution of net ecosystem productivity in the Bailongjiang Watershed of Gansu Province[J]. Acta Ecologica Sinica, 2017, 37(15):5121-5128.
Google Scholar
|
| [36] |
周夏飞, 於方, 曹国志, 等. 2001—2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系[J]. 水土保持研究, 2019, 26(1):76-81.
Google Scholar
|
| [37] |
Zhou X F, Yu F, Cao G Z, et al. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Xizang Plateau grassland ecosystem during 2001—2015[J]. Research of Soil and Water Conservation, 2019, 26(1):76-81.
Google Scholar
|
| [38] |
Pei Z Y, Ouyang H, Zhou C P, et al. Carbon balance in an alpine steppe in the Qinghai-Xizang Plateau[J]. Journal of Integrative Plant Biology, 2009, 51(5):521-526.
Google Scholar
|
| [39] |
潘竟虎, 文岩. 中国西北干旱区植被碳汇估算及其时空格局[J]. 生态学报, 2015, 35(23):7718-7728.
Google Scholar
|
| [40] |
Pan J H, Wen Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of northwest China[J]. Acta Ecologica Sinica, 2015, 35(23):7718-7728.
Google Scholar
|
| [41] |
张璐, 王静, 施润和. 2000—2010年东北三省碳源汇时空动态遥感研究[J]. 华东师范大学学报(自然科学版), 2015(4):164-173.
Google Scholar
|
| [42] |
Zhang L, Wang J, Shi R H. Temporal-spatial variations of carbon sink / source in Northeast China from 2000 to 2010[J]. Journal of East China Normal University(Natural Science), 2015(4):164-173.
Google Scholar
|
| [43] |
童晓伟, 王克林, 岳跃民, 等. 桂西北喀斯特区域植被变化趋势及其对气候和地形的响应[J]. 生态学报, 2014, 34(12):3425-3434.
Google Scholar
|
| [44] |
Tong X W, Wang K L, Yue Y M, et al. Trends in vegetation and their responses to climate and topography in northwest Guangxi[J]. Acta Ecologica Sinica, 2014, 34(12):3425-3434.
Google Scholar
|
| [45] |
刘逸滨, 刘宝元, 成城, 等. 退耕还林草20年来榆林市植被覆盖度时空变化及影响因素分析[J]. 水土保持学报, 2022, 36(2):197-208,218.
Google Scholar
|
| [46] |
Liu Y B, Liu B Y, Cheng C, et al. Spatio-temporal changes and influencing factors of vegetation coverage in Yulin city during the past 20 years since the implementation of the “Grain for Green” Program[J]. Journal of Soil and Water Conservation, 2022, 36(2):197-208,218.
Google Scholar
|
| [47] |
冯娴慧, 曾芝琳, 张德顺. 基于MODIS NDVI数据的粤港澳大湾区植被覆盖时空演变[J]. 中国城市林业, 2022, 20(1):1-6,28.
Google Scholar
|
| [48] |
Feng X H, Zeng Z L, Zhang D S. Temporal-spatial evolution of vegetation coverage in Guangdong-HongKong-Macao Greater Bay Area based on MODIS NDVI data[J]. Journal of Chinese Urban Forestry, 2022, 20(1):1-6,28.
Google Scholar
|
| [49] |
张亮, 蒋军. 基于MODIS-NDVI的地表植被时空变化特征及其与环境因子的关系[J]. 安徽农业科学, 2022, 50(4):57-63.
Google Scholar
|
| [50] |
Zhang L, Jiang J. Temporal and spatial variation characteristics of surface vegetation and its relationship with environmental factors based on MODIS-NDVI[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4):57-63.
Google Scholar
|
| [51] |
范微维. 2000—2014年三江源区植被NDVI时空变化特征与气候变化响应分析[D]. 成都: 成都理工大学, 2017.
Google Scholar
|
| [52] |
Fan W W. Analysis of NDVI changes and its climate driving factors in the Three River-Headwater region during 2000—2014[D]. Chengdu: Chengdu University of Technology, 2017.
Google Scholar
|
| [53] |
张翀, 李强, 李忠峰. 三江源地区人类活动对植被覆盖的影响[J]. 中国人口·资源与环境, 2014, 24(5):139-144.
Google Scholar
|
| [54] |
Zhang C, Li Q, Li Z F. Influence of human activities on variation of vegetation cover in the Three-River Source region[J]. China Population,Resources and Environment, 2014, 24(5):139-144.
Google Scholar
|
| [55] |
邵全琴, 刘纪远, 黄麟, 等. 2005—2009年三江源自然保护区生态保护和建设工程生态成效综合评估[J]. 地理研究, 2013, 32(9):1645-1656.
Google Scholar
|
| [56] |
Shao Q Q, Liu J Y, H L, et al. Integrated assessment on the effectiveness of ecological conservation in Sanjiangyuan National Nature Reserve[J]. Geographical Research, 2013, 32(9):1645-1656.
Google Scholar
|
| [57] |
李璠, 徐维新. 2000—2015年青海省不同功能区NDVI时空变化分析[J]. 草地学报, 2017, 25(4):701-710.
Google Scholar
|
| [58] |
Li F, Xu W X. Spatial and temporal variation of NDVl in different functional areas of Qinghai from 2000 to 2015[J]. Acta Agrestia Sinica, 2017, 25(4):701-710.
Google Scholar
|
| [59] |
李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19):5495-5504.
Google Scholar
|
| [60] |
Li H X, Liu G H, Fu B J. Response of vegetation to climate change and human activity based on NDVl in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2011, 31(19):5495-5504.
Google Scholar
|
| [61] |
刘宪锋, 任志远, 林志慧, 等. 2000-2011年三江源区植被覆盖时空变化特征[J]. 地理学报, 2013, 68(7):897-908.
Google Scholar
|
| [62] |
Liu X F, Ren Z Y, Lin Z H, et al. The spatial-temporal changes of vegetation coverage in the Three-River Headwater region in recent 12 years[J]. Acta Geographica Sinica, 2013, 68(7):897-908.
Google Scholar
|
| [63] |
Shi P J, Sun S, Wang M, et al. Climate change regionalization in China (1961—2010)[J]. Science China Earth Sciences, 2014, 57(11): 2676-2689.
Google Scholar
|
| [64] |
Bao G, Bao Y H, Sanjjava A, et al. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale[J]. International Journal of Climatology, 2015, 35(14): 4293-4306.
Google Scholar
|
| [65] |
Sun J, Zhou T C, Liu M, et al. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Xizang Plateau[J]. Global Ecology and Biogeography, 2020, 29(1): 50-64.
Google Scholar
|
| [66] |
Zhang X L, Tan Y L, Li A, et al. Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe[J]. Scientific Reports, 2015, 5:15549.
Google Scholar
|
| [67] |
Zhang X L, Tan Y L, Zhang B W, et al. The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe[J]. Ecosphere, 2017, 8(1):e01655.
Google Scholar
|
| [68] |
张晓琳, 翟鹏辉, 黄建辉. 降水和氮沉降对草地生态系统碳循环影响研究进展[J]. 草地学报, 2018, 26(2):284-288.
Google Scholar
|
| [69] |
Zhang X L, Zhai P H, Huang J H. Advances in the influences of precipitation and nitrogen deposition change on the carbon cycle of grassland ecosystem[J]. Acta Agrestia Sinica, 2018, 26(2):284-288.
Google Scholar
|
| [70] |
陈晨, 王义民, 黎云云, 等. 黄河流域1982—2015年不同气候区植被时空变化特征及其影响因素[J]. 长江科学院院报, 2022, 39(2):56-62,81.
Google Scholar
|
| [71] |
Chen C, Wang Y M, Li Y Y, et al. Vegetation changes and influencing factors in different climatic regions of Yellow River basin from 1982 to 2015[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(2):56-62,81.
Google Scholar
|
| [72] |
贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应[J]. 生态学报, 2019, 39(14):5058-5069.
Google Scholar
|
| [73] |
Jia J H, Liu H Y, Lin Z S. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change[J]. Acta Ecologica Sinica, 2019, 39(14):5058-5069.
Google Scholar
|
| [74] |
商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1):68-76.
Google Scholar
|
| [75] |
Shang S S, Lian L S, Ma T, et al. Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years[J]. Arid Zone Research, 2018, 35(1):68-76.
Google Scholar
|