[1] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the International Conference on Neural Information Processing Systems. Lake Tahoe: NIPS, 2012:1097-1105.
Google Scholar
|
[2] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:770-778.
Google Scholar
|
[3] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:4700-4708.
Google Scholar
|
[4] |
Wang G, Fan B, Xiang S, et al. Aggregating rich hierarchical features for scene classification in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4104-4115.
Google Scholar
|
[5] |
Razavian A S, Sullivan J, Carlsson S, et al. Visual instance retrieval with deep convolutional networks[J]. ITE Transactions on Media Technology and Applications, 2016, 4(3):251-258.
Google Scholar
|
[6] |
Zheng L, Yang Y, Tian Q. SIFT meets CNN:A decade survey of instance retrieval[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2018, 40(5):1224-1244.
Google Scholar
|
[7] |
Hu F, Xia G S, Hu J, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707.
Google Scholar
|
[8] |
Cheng G, Li Z, Yao X, et al. Remote sensing image scene classification using bag of convolutional features[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1735-1739.
Google Scholar
|
[9] |
王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5):1098-1105.
Google Scholar
|
[10] |
Wang X, Li K, Ning C, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics & Information Technology, 2019, 41(5):1098-1105.
Google Scholar
|
[11] |
He N, Fang L, Li S, et al. Remote sensing scene classification using multilayer stacked covariance pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12):6899-6910.
Google Scholar
|
[12] |
Cheng G, Yang C, Yao X, et al. When deep learning meets metric learning:Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5):2811-2821.
Google Scholar
|
[13] |
刘异, 庄姊琪, 闫利, 等. 联合Fisher核编码和卷积神经网络的影像场景分类[J]. 遥感信息, 2018, 33(4):8-15.
Google Scholar
|
[14] |
Liu Y, Zhuang Z Q, Yan L, et al. Combined Fisher kernel coding framework with convolutional neural network for remote sensing scene classification[J]. Remote Sensing Information, 2018, 33(4):8-15.
Google Scholar
|
[15] |
余东行, 张保明, 赵传, 等. 联合卷积神经网络与集成学习的遥感影像场景分类[J]. 遥感学报, 2020, 24(6):717-727.
Google Scholar
|
[16] |
Yu D H, Zhang B M, Zhao C, et al. Scene classification of remote sensing image using ensemble convolutional neural network[J]. Journal of Remote Sensing, 2020, 24(6):717-727.
Google Scholar
|
[17] |
李亚飞, 董红斌. 基于卷积神经网络的遥感图像分类研究[J]. 智能系统学报, 2018, 13(4):550-556.
Google Scholar
|
[18] |
Li Y F, Dong H B. Classification of remote-sensing image based on convolutional neural network[J]. CAAI Transactions on Intelligent Systems, 2018, 13(4):550-556.
Google Scholar
|
[19] |
张哲益, 曹卫华, 朱蕊, 等. 基于脉冲卷积神经网络稀疏表征的高分辨率遥感图像场景分类方法[J]. 控制与决策, 2022, 37(9):2305-2313.
Google Scholar
|
[20] |
Zhang Z Y, Cao W H, Zhu R, et al. Sparse representation with spike convolutional neural networks for scene classification of remote sensing images of high resolution[J]. Control and Decision, 2022, 37(9):2305-2313.
Google Scholar
|
[21] |
Selvaraju R R, Cogswell M, Das A, et al. Grad-cam:Visual explanations from deep networks via gradient-based localization[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice:IEEE, 2017:618-626.
Google Scholar
|
[22] |
Lin K, Yang H F, Hsiao J H, et al. Deep learning of binary hash codes for fast image retrieval[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston:IEEE, 2015:27-35.
Google Scholar
|
[23] |
Lazebnik S, Schmid C, Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York: IEEE, 2006:2169-2178.
Google Scholar
|
[24] |
Arandjelovic R, Zisserman A. All about VLAD[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland:IEEE, 2013:1578-1585.
Google Scholar
|
[25] |
李国祥, 马文斌, 王继军. 稠密特征编码的遥感场景分类算法[J]. 小型微型计算机系统, 2021, 42(4):766-772.
Google Scholar
|
[26] |
Li G X, Ma W B, Wang J J. Remote sensing image classification based on dense feature coding[J]. Journal of Chinese Computer Systems, 2021, 42(4):766-772.
Google Scholar
|
[27] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arxiv, 2014[2022-04-24]. https://arxiv.org/pdf/1409.1556.pdf.
Google Scholar
|
[28] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:1-9.
Google Scholar
|
[29] |
Arandjelovic R, Gronat P, Torii A, et al. NetVLAD:CNN architecture for weakly supervised place recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:5297-5307.
Google Scholar
|
[30] |
Lin T, Roychowdhury A, Maji S. Bilinear convolutional neural networks for fine-grained visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1309-1322.
Google Scholar
|
[31] |
Sánchez J, Perronnin F, Mensink T, et al. Image classification with the fisher vector:Theory and practice[J]. International Journal of Computer Vision, 2013, 105(3):222-245.
Google Scholar
|