[1] |
Murakami H, Nakagawa K, Hasegawa H, et al. Change detection of buildings using an airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2):148-152.
Google Scholar
|
[2] |
Vu T, Matsuoka M, Yamazaki F. LiDAR-based change detection of buildings in dense urban areas[C]// IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2004:3413-3416.
Google Scholar
|
[3] |
Pang S, Hu X, Wang Z, et al. Object-based analysis of airborne LiDAR data for building change detection[J]. Remote Sensing, 2014, 6(11):10733-10749.
Google Scholar
|
[4] |
Pirasteh S, Rashidi P, Rastiveis H, et al. Developing an algorithm for buildings extraction and determining changes from airborne LiDAR,and comparing with R-CNN method from drone images[J]. Remote Sensing, 2019, 11(11):1272.
Google Scholar
|
[5] |
曾静静, 张晓刚, 王刚. 基于LiDAR点云的城区地表变化检测[J]. 城市勘测, 2021(2):92-95.
Google Scholar
|
[6] |
Zeng J J, Zhang X G, Wang G. Urban land surface change detection based on LiDAR point cloud[J]. Urban Geotechnical Investigation and Surveying, 2021(2):92-95.
Google Scholar
|
[7] |
Matikainen L, Hyypp? J, Ahokas E, et al. Automatic detection of buildings and changes in buildings for updating of maps[J]. Remote Sensing, 2010, 2(5):1217-1248.
Google Scholar
|
[8] |
Malpica J A, Alonso M C. Urban changes with satellite imagery and LiDAR data[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Science, 2010, 38(8):853-858.
Google Scholar
|
[9] |
Du S, Zhang Y, Qin R, et al. Building change detection using old aerial images and new LiDAR data[J]. Remote Sensing, 2016, 8(12):1030.
Google Scholar
|
[10] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
Google Scholar
|
[11] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, 2014(2015-04-10)[2022-10/15]. https://arxiv.org/abs/1409.1556 .
Google Scholar
|
[12] |
Badrinarayanan V, Kendall A, Cipolla R. Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
Google Scholar
|
[13] |
He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
Google Scholar
|
[14] |
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
Google Scholar
|
[15] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6):1137-1149.
Google Scholar
|
[16] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
Google Scholar
|
[17] |
谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2):38-43.doi:10.6046/gtzyyg.2019.02.06.
Google Scholar
|
[18] |
Xie Q F, Yao G Q, Zhang M. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2019, 31(2):38-43.doi:10.6046/gtzyyg.2019.02.06.
Google Scholar
|
[19] |
武宇, 张俊, 李屹旭, 等. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2):48-54.doi:10.6046/gtzyyg.2020278.
Google Scholar
|
[20] |
Wu Y, Zhang J, Li Y X, et al. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land and Resources, 2021, 33(2):48-54.doi:10.6046/gtzyyg.2020278.
Google Scholar
|
[21] |
卢麒, 秦军, 姚雪东, 等. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2):75-84.doi:10.6046/gtzyyg.2020289.
Google Scholar
|
[22] |
Lu Q, Qin J, Yao X D, et al. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land and Resources, 2021, 33(2):75-84.doi:10.6046/gtzyyg.2020289.
Google Scholar
|
[23] |
刘文雅, 岳安志, 季钰, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):120-129.doi:10.6046/gtzyyg.2020.02.16.
Google Scholar
|
[24] |
Liu W Y, Yue A Z, Ji Y, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land and Resources, 2020, 32(2):120-129.doi:10.6046/gtzyyg.2020.02.16.
Google Scholar
|
[25] |
安健健, 孟庆岩, 胡蝶, 等. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2):93-99.doi:10.6046/gtzyyg.2020184.
Google Scholar
|
[26] |
An J J, Meng Q Y, Hu D, et al. The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2021, 33(2):93-99.doi:10.6046/gtzyyg.2020184.
Google Scholar
|
[27] |
Guo Y, Wang H, Hu Q, et al. Deep learning for 3D point clouds:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12):4338-4364.
Google Scholar
|
[28] |
Qi C R, Su H, Mo K, et al. Pointnet:Deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:652-660.
Google Scholar
|
[29] |
Wu B, Wan A, Yue X, et al. Squeezeseg:Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018:1887-1893.
Google Scholar
|
[30] |
Thomas H, Qi C R, Deschaud J E, et al. Kpconv:Flexible and deformable convolution for point clouds[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:6411-6420.
Google Scholar
|
[31] |
Hu Q, Yang B, Xie L, et al. RandLA-Net:Efficient semantic segmentation of large-scale point clouds[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:11108-11117.
Google Scholar
|
[32] |
Hackel T, Savinov N, Ladicky L, et al. Semantic3d.net:A new large-scale point cloud classification benchmark[J/OL]. arXiv, 2017(2017-04-12)[2022-10/15]. https://arxiv.org/abs/1704.03847 .
Google Scholar
|