[1] |
Steele J E, Sunds?y P R, Pezzulo C, et al. Mapping poverty using mobile phone and satellite data[J]. Journal of the Royal Society Interface, 2017, 14(127):20160690.
Google Scholar
|
[2] |
刘彦随, 周扬, 刘继来. 中国农村贫困化地域分异特征及其精准扶贫策略[J]. 中国科学院院刊, 2016, 31(3):269-278.
Google Scholar
|
[3] |
Liu Y S, Zhou Y, Liu J L. Regional differentiation characteristics of rural poverty and targeted poverty alleviation strategy in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(3):269-278.
Google Scholar
|
[4] |
周扬, 郭远智, 刘彦随. 中国县域贫困综合测度及2020年后减贫瞄准[J]. 地理学报, 2018, 73(8):1478-1493.
Google Scholar
|
[5] |
Zhou Y, Guo Y Z, Liu Y S. Comprehensive measurement of county poverty and anti-poverty targeting after 2020 in China[J]. Acta Geographica Sinica, 2018, 73(8):1478-1493.
Google Scholar
|
[6] |
Amis P, Rakodi C. Urban poverty:Concepts,characteristics and policies[J]. Habitat International, 1995, 19(4):403-405.
Google Scholar
|
[7] |
胡为安. 基于合成NPP-VIIRS年度数据的中国贫困地区发展状况研究[D]. 赣州: 江西理工大学, 2020.
Google Scholar
|
[8] |
Hu W A. Research on the development situation of poor regions in China based on synthetic NPP-VIIRS annual data[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
Google Scholar
|
[9] |
王武林, 余翠婵, 曾献君, 等. 东南沿海县域贫困度演变特征及驱动因素研究——以福建省为例[J]. 地理科学进展, 2020, 39(11):1860-1873.
Google Scholar
|
[10] |
Wang W L, Yu C C, Zeng X J, et al. Evolution characteristics and driving factors of county poverty degree in China’s southeast coastal areas:A case study of Fujian Province[J]. Progress in Geography, 2020, 39(11):1860-1873.
Google Scholar
|
[11] |
郭熙保, 罗知. 论贫困概念的演进[J]. 江西社会科学, 2005(11):38-43.
Google Scholar
|
[12] |
Guo X B, Luo Z. Evolution of the concept of poverty[J]. Jiangxi Social Sciences, 2005(11):38-43.
Google Scholar
|
[13] |
胡蝶. 基于机器学习的贫困等级分类[D]. 武汉: 华中师范大学, 2019.
Google Scholar
|
[14] |
Hu D. Classification of poverty levels based on machine learning[D]. Wuhan: Central China Normal University, 2019.
Google Scholar
|
[15] |
Cheli B, Lemmi A. A totally fuzzy and relative approach to the multidimensional analysis of poverty[J]. Economic Notes, 1995, 24(1):115-134.
Google Scholar
|
[16] |
Bourguignon F, Chakravarty S R. The measurement of multidimensional poverty[M]. Smgapore: Poverty,Social Exclusion and Stochastic Dominance. Springer, 2019:83-107.
Google Scholar
|
[17] |
Lugo M, Maasoumi E. Multidimensional poverty measures from an information theory perspective[M]. Oxford Poverty and Human Development Initiative (OPHI), 2009.
Google Scholar
|
[18] |
Alkire S, Foster J. Counting and multidimensional poverty measurement[J]. Journal of Public Economics, 2011, 95(7-8):476-487.
Google Scholar
|
[19] |
Noor A M, Alegana V A, Gething P W, et al. Using remotely sensed night-time light as a proxy for poverty in Africa[J]. Population Health Metrics, 2008, 6(1):5.
Google Scholar
|
[20] |
Smith B, Wills S. Left in the dark? Oil and rural poverty[J]. Journal of the Association of Environmental and Resource Economists, 2018, 5(4):865-904.
Google Scholar
|
[21] |
Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data[J]. Computers and Geosciences, 2009, 35(8):1652-1660.
Google Scholar
|
[22] |
Wang W, Cheng H, Zhang L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China[J]. Advances in Space Research, 2012, 49(8):1253-1264.
Google Scholar
|
[23] |
Li G, Chang L, Liu X, et al. Monitoring the spatiotemporal dynamics of poor counties in China:Implications for global sustainable development goals[J]. Journal of Cleaner Production, 2019, 227:392-404.
Google Scholar
|
[24] |
Han L, Zhang Q, Ma P, et al. The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes[J]. Theoretical and Applied Climatology, 2016, 124(3):517-528.
Google Scholar
|
[25] |
Zhao J, Ji G, Yue Y, et al. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets[J]. Applied Energy, 2019, 235:612-624.
Google Scholar
|
[26] |
Sun Y, Zheng S, Wu Y, et al. Spatiotemporal variations of city-level carbon emissions in China during 2000—2017 using nighttime light data[J]. Remote Sensing, 2020, 12(18):2916.
Google Scholar
|
[27] |
Wu J, He S, Peng J, et al. Intercalibration of DMSP-OLS night-time light data by the invariant region method[J]. International Journal of Remote Sensing, 2013, 34(20):7356-7368.
Google Scholar
|
[28] |
Yue Y, Tian L, Yue Q, et al. Spatiotemporal variations in energy consumption and their influencing factors in China based on the integration of the DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Remote Sensing, 2020, 12(7):1151.
Google Scholar
|
[29] |
Wu Y, Jiang M, Chang Z, et al. Does China’s urban development satisfy Zipf’s law? A multiscale perspective from the NPP-VIIRS nighttime light data[J]. International Journal of Environmental Research and Public Health, 2020, 17(4):1460.
Google Scholar
|
[30] |
Li X, Zhou Y, Zhao M, et al. A harmonized global nighttime light dataset 1992—2018[J]. Scientific Data, 2020, 7(1):1-9.
Google Scholar
|
[31] |
Elvidge C D, Ziskin D, Baugh K E, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009, 2(3):595-622.
Google Scholar
|
[32] |
Hall F G, Strebel D E, Nickeson J E, et al. Radiometric rectification:Toward a common radiometric response among multidate,multisensor images[J]. Remote Sensing of Environment, 1991, 35(1):11-27.
Google Scholar
|
[33] |
Ma J, Guo J, Ahmad S, et al. Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light[J]. Remote Sensing, 2020, 12(6):937.
Google Scholar
|
[34] |
Jeswani R, Kulshrestha A, Gupta P K, et al. Evaluation of the consistency of DMSP-OLS and SNPP-VIIRS night-time light datasets[J]. J Geomat, 2019, 13:98-105.
Google Scholar
|
[35] |
Gori M, Tesi A. On the problem of local minima in back propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(1):76-86.
Google Scholar
|
[36] |
Zhang J R, Zhang J, Lok T M, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation, 2007, 185(2):1026-1037.
Google Scholar
|
[37] |
Wang Y, Wang B. Multidimensional poverty measure and analysis:A case study from Hechi City,China[J]. SpringerPlus, 2016, 5(1):642.
Google Scholar
|
[38] |
Li C, Yang W, Tang Q, et al. Detection of multidimensional poverty using Luojia 1-01 nighttime light imagery[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(7):963-977.
Google Scholar
|
[39] |
Alkire S, Foster J. Counting and multidimensional poverty measurement[J]. Journal of Public Economics, 2011, 95(7):476-487.
Google Scholar
|
[40] |
Hu J, Zhang T, Xin X, et al. Income identification and long-term multidimensional poverty:An empirical analysis based on data from China household tracking survey[J]. On Economic Problems, 2019 (8):75-81,90.
Google Scholar
|
[41] |
Yin J, Qiu Y, Zhang B. Identification of poverty areas by remote sensing and machine learning:A case study in Guizhou,Southwest China[J]. ISPRS Int ernational Jounra Geo-Inf ormation, 2021, 10(1):11.
Google Scholar
|
[42] |
Yu B, Shi K, Hu Y, et al. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2017, 8(3):1217-1229.
Google Scholar
|