[1] |
李德仁. 论21世纪遥感与GIS的发展[J]. 武汉大学学报(信息科学版), 2003, 28(2):127-131.
Google Scholar
|
[2] |
Li D R. Towards the development of remote sensing and GIS in the 21st century[J]. Geomatics and Information Science of Wuhan University, 2003, 28(2):127-131.
Google Scholar
|
[3] |
梁晓珩, 梁秀娟, 柯蓓. 我国遥感卫星系统发展进阶路径探讨[J]. 航天器环境工程, 2021, 38(1):100-105.
Google Scholar
|
[4] |
Liang X H, Liang X J, Ke B. The development path of romote sensing satellite system in China[J]. Spacecraft Environment Engineering, 2021, 38(1):100-105.
Google Scholar
|
[5] |
廖小罕. 中国对地观测20年科技进步和发展[J]. 遥感学报, 2021, 25(1):267-275.
Google Scholar
|
[6] |
Liao X H. Scientific and technological progress and development prospect of the earth observation in China in the past 20 years[J]. National Remote Sensing Bulletin, 2021, 25(1):267-275.
Google Scholar
|
[7] |
孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
Google Scholar
|
[8] |
Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5):479-510.
Google Scholar
|
[9] |
许和鱼, 张黎明, 李鑫, 等. 基于太阳漫反射板线阵CCD相对辐射定标方法研究[J]. 光学学报, 2020, 40(6):179-187.
Google Scholar
|
[10] |
Xu H Y, Zhang L M, Li X, et al. A relative radiometric calibration method based on solar diffuser research for a linear array CCD detector[J]. Acta Optica Sinica, 2020, 40(6):179-187.
Google Scholar
|
[11] |
曹红业, 张天棋. 基于辐射传输模型的高分二号影像大气校正方法研究[J]. 红外技术, 2020, 42(6):534-541.
Google Scholar
|
[12] |
Cao H Y, Zhang T Q. Atmospheric correction algorithm for GF-2 image based on a radiative transfer model[J]. Infrared Technology, 2020, 42(6):534-541.
Google Scholar
|
[13] |
He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
Google Scholar
|
[14] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]// The 3rd International Conference on Learning Representations (ICLR2015), 2015:1-14.
Google Scholar
|
[15] |
胡杰, 张莹, 谢仕义. 国产遥感影像分类技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(3):1-13.
Google Scholar
|
[16] |
Hu J, Zhang Y, Xie S Y. Summary of research progress on application of domestic remote sensing image classification technology[J]. Computer Engineering and Applications, 2021, 57(3):1-13.
Google Scholar
|
[17] |
周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1):182-197.
Google Scholar
|
[18] |
Zhou P C, Cheng G, Yao X W, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1):182-197.
Google Scholar
|
[19] |
谭琨, 王雪, 杜培军. 结合深度学习和半监督学习的遥感影像分类进展[J]. 中国图象图形学报, 2019, 24(11):1823-1841.
Google Scholar
|
[20] |
Tan K, Wang X, Du P J. Research progress of the remote sensing classification combining deep learning and semi-supervised learning[J]. Journal of Image and Graphics, 2019, 24(11):1823-1841.
Google Scholar
|
[21] |
王智敏, 谭海, 郭正胜, 等. 基于CNN的高分辨率遥感影像多级云检测[J]. 测绘与空间地理息, 2020, 43(9):139-142,145,151.
Google Scholar
|
[22] |
Wang Z M, Tan H, Guo Z S, et al. Multi-level cloud detection in high-resolution remote sensing images based on CNN[J]. Geomatics and Spatial Information Technology, 2020, 43(9):139-142,145,151.
Google Scholar
|
[23] |
蔡之灵, 翁谦, 叶少珍, 等. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
Google Scholar
|
[24] |
Cai Z L, Weng Q, Ye S Z, et al. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land and Resources, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
Google Scholar
|
[25] |
Tan M, Le Q V. EfficientNet:Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning.Long Beach, USA:ICML, 2019:6105-6114.
Google Scholar
|
[26] |
Wang K R, Yu X B. MobileNet and EfficientNet demonstration on Google landmark recognition dataset[J]. International Core Journal of Engineering, 2021, 7(3):313-319.
Google Scholar
|
[27] |
张敏, 赵雪青. 基于EfficientNets的织物疵点图像分类方法[J]. 纺织高校基础科学学报, 2020, 33(4):64-70.
Google Scholar
|
[28] |
Zhang M, Zhao X Q. EfficientNets-based method for fabric defect image classification[J]. Basic Sciences Journal of Textile Universities, 2020, 33(4):64-70.
Google Scholar
|
[29] |
赵鹏菲, 黄丽佳. 一种基于EfficientNet与BiGRU的多角度SAR图像目标识别方法[J]. 雷达学报, 2021, 10(6):895-904.
Google Scholar
|
[30] |
Zhao P F, Huang L J. Target recognition method for multi-aspect synthetic aperture Radar images based on EfficientNet and BiGRU[J]. Journal of Radars, 2021, 10(6):895-904.
Google Scholar
|
[31] |
Duong L T, Nguyen P T, Sipio C D, et al. Automated fruit recognition using EfficientNet and MixNet[J]. Computers and Electronics in Agriculture, 2020, 171:105326.
Google Scholar
|
[32] |
宝音图, 刘伟, 牛朝阳, 等. 联合集成学习与EfficientNet的光学遥感图像场景分类[J]. 计算机工程, 2021, 47(10):226-235.
Google Scholar
|
[33] |
Bao Y T, Liu W, Niu C Y, et al. Scene classification of optical remote sensing images joint ensemble learning and EfficientNet[J]. Computer Engineering, 2021, 47(10):226-235.
Google Scholar
|
[34] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
Google Scholar
|